CATEGORIFICATION OF THE ELLIPTIC HALL ALGEBRA

被引:0
|
作者
Mousaaid, Youssef [1 ]
Savage, Alistair [1 ]
机构
[1] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
来源
DOCUMENTA MATHEMATICA | 2022年 / 27卷
基金
加拿大自然科学与工程研究理事会;
关键词
Categorification; elliptic Hall algebra; Heisenberg category; skein theory; Hecke algebras; HECKE ALGEBRAS; QUANTUM; CONSTRUCTION;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the central charge k reduction of the universal central extension of the elliptic Hall algebra is isomorphic to the trace, or zeroth Hochschild homology, of the quantum Heisenberg category of central charge k. As an application, we construct large families of representations of the universal extension of the elliptic Hall algebra.
引用
收藏
页码:1225 / 1274
页数:50
相关论文
共 50 条
  • [31] A generic hall algebra of the kronecker algebra
    Szántó, C
    COMMUNICATIONS IN ALGEBRA, 2005, 33 (08) : 2519 - 2540
  • [32] On the Algebra of elliptic curves
    Brzezinski, Tomasz
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (02) : 548 - 556
  • [33] The Hall algebra of a curve
    Kapranov, Mikhail
    Schiffmann, Olivier
    Vasserot, Eric
    SELECTA MATHEMATICA-NEW SERIES, 2017, 23 (01): : 117 - 177
  • [34] The Hall algebra of a curve
    Mikhail Kapranov
    Olivier Schiffmann
    Eric Vasserot
    Selecta Mathematica, 2017, 23 : 117 - 177
  • [35] Elliptic Biquaternion Algebra
    Ozen, Kahraman Esen
    Tosun, Murat
    6TH INTERNATIONAL EURASIAN CONFERENCE ON MATHEMATICAL SCIENCES AND APPLICATIONS (IECMSA-2017), 2018, 1926
  • [36] Hall Numbers and the Composition Algebra of the Kronecker Algebra
    Csaba Szántó
    Algebras and Representation Theory, 2006, 9 : 465 - 495
  • [37] Hall numbers and the composition algebra of the Kronecker algebra
    Szanto, Csaba
    ALGEBRAS AND REPRESENTATION THEORY, 2006, 9 (05) : 465 - 495
  • [38] BPS Hall algebra of scattering Hall states
    Galakhov, Dmitry
    NUCLEAR PHYSICS B, 2019, 946
  • [39] An Elliptic Non Distributive Algebra
    Fernandez-Guasti, M.
    Zaldivar, Felipe
    ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2013, 23 (04) : 825 - 835
  • [40] The Hall algebra of a spherical object
    Keller, Bernhard
    Yang, Dong
    Zhou, Guodong
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2009, 80 : 771 - 784