Machine Learning Assisted Doppler Features for Enhancing Thyroid Cancer Diagnosis A Multi-Cohort Study

被引:7
|
作者
Zhu, Yi-Cheng [1 ]
Du, Hongbo [2 ]
Jiang, Quan [1 ]
Zhang, Tao [3 ]
Huang, Xu-Juan [4 ]
Zhang, Yuan [1 ]
Shi, Xiu-Rong [1 ]
Shan, Jun [1 ]
AlZoubi, Alaa [2 ]
机构
[1] Shanghai Univ Med & Hlth Sci, Pudong New Area Peoples Hosp, Dept Ultrasound, Shanghai, Peoples R China
[2] Univ Buckingham, Sch Comp, Hunter St, Buckingham MK18 1EG, England
[3] Pudong New Area Jinyang Community Healthcare Ctr, Dept Ultrasound, Shanghai, Peoples R China
[4] Pudong New Area Heqing Community Healthcare Ctr, Dept Ultrasound, Shanghai, Peoples R China
关键词
artificial neural network; Doppler ultrasound; machine learning; thyroid nodules; ultrasound; COMPUTER-AIDED DIAGNOSIS; COLOR-DOPPLER; PREDICTIVE-VALUE; NODULES; ULTRASOUND; FLOW; ULTRASONOGRAPHY; SONOGRAPHY; MALIGNANCY;
D O I
10.1002/jum.15873
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Background This pilot study aims at exploiting machine learning techniques to extract color Doppler ultrasound (CDUS) features and to build an artificial neural network (ANN) model based on these CDUS features for improving the diagnostic performance of thyroid cancer classification. Methods A total of 674 patients with 712 thyroid nodules (TNs) (512 from internal dataset and 200 from external dataset) were randomly selected in this retrospective study. We used ANN to build a model (TDUS-Net) for classifying malignant and benign TNs using both the automatically extracted quantitative CDUS features (whole ratio, intranodular ratio, peripheral ratio, and number of vessels) and gray-scale ultrasound (US) features defined by the American College of Radiology (ACR) Thyroid Imaging Reporting and Data System (TI-RADS). Then, we compared the diagnostic performance of the model, the performance of another ANN model based on the gray-scale US features alone (TUS-Net), and that of radiologists. Results The TDUS-Net (0.898, 95% CI: 0.868-0.922) achieved a higher area under the curve (AUC) than that of TUS-Net (0.881, 95% CI: 0.850-0.908) in the internal tests. Compared with radiologists, TDUS-Net (AUC: 0.925, 95% CI: 0.880-0.958) performed better than radiologists (AUC: 0.810, 95% CI: 0.749-0.862) in the external tests. Conclusions Applying a machine learning model by combining both gray-scale US features and CDUS features can achieve comparable or even higher performance than radiologists in classifying TNs.
引用
下载
收藏
页码:1961 / 1974
页数:14
相关论文
共 50 条
  • [1] Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study
    Qiang Zhang
    Sheng Zhang
    Jianxin Li
    Yi Pan
    Jing Zhao
    Yixing Feng
    Yanhui Zhao
    Xiaoqing Wang
    Zhiming Zheng
    Xiangming Yang
    Lixia Liu
    Chunxin Qin
    Ke Zhao
    Xiaonan Liu
    Caixia Li
    Liuyang Zhang
    Chunrui Yang
    Na Zhuo
    Hong Zhang
    Jie Liu
    Jinglei Gao
    Xiaoling Di
    Fanbo Meng
    Wei Ji
    Meng Yang
    Xiaojie Xin
    Xi Wei
    Rui Jin
    Lun Zhang
    Xudong Wang
    Fengju Song
    Xiangqian Zheng
    Ming Gao
    Kexin Chen
    Xiangchun Li
    Cancer Biology & Medicine, 2022, (05) : 733 - 741
  • [2] Improved diagnosis of thyroid cancer aided with deep learning applied to sonographic text reports: a retrospective, multi-cohort, diagnostic study
    Zhang, Qiang
    Zhang, Sheng
    Li, Jianxin
    Pan, Yi
    Zhao, Jing
    Feng, Yixing
    Zhao, Yanhui
    Wang, Xiaoqing
    Zheng, Zhiming
    Yang, Xiangming
    Liu, Lixia
    Qin, Chunxin
    Zhao, Ke
    Liu, Xiaonan
    Li, Caixia
    Zhang, Liuyang
    Yang, Chunrui
    Zhuo, Na
    Zhang, Hong
    Liu, Jie
    Gao, Jinglei
    Di, Xiaoling
    Meng, Fanbo
    Ji, Wei
    Yang, Meng
    Xin, Xiaojie
    Wei, Xi
    Jin, Rui
    Zhang, Lun
    Wang, Xudong
    Song, Fengju
    Zheng, Xiangqian
    Gao, Ming
    Chen, Kexin
    Li, Xiangchun
    CANCER BIOLOGY & MEDICINE, 2022, 19 (05) : 733 - 741
  • [3] Deep learning for lung cancer prognostication: A retrospective multi-cohort radiomics study
    Hosny, Ahmed
    Parmar, Chintan
    Coroller, Thibaud P.
    Grossmann, Patrick
    Zeleznik, Roman
    Kumar, Avnish
    Bussink, Johan
    Gillies, Robert J.
    Mak, Raymond H.
    Aerts, Hugo J. W. L.
    PLOS MEDICINE, 2018, 15 (11)
  • [4] Construction of exosome transcriptomic signature for noninvasive and early detection of gastric cancer patients by machine learning: a multi-cohort study
    Cai, Ze-Rong
    Zheng, Yong-Qiang
    Zhang, Lin
    Hu, Yan
    GUT, 2023, 72 (SUPPL_1) : A202 - A203
  • [5] Long working hours and cancer risk: a multi-cohort study
    Katriina Heikkila
    Solja T Nyberg
    Ida E H Madsen
    Ernest de Vroome
    Lars Alfredsson
    Jacob J Bjorner
    Marianne Borritz
    Hermann Burr
    Raimund Erbel
    Jane E Ferrie
    Eleonor I Fransson
    Goedele A Geuskens
    Wendela E Hooftman
    Irene L Houtman
    Karl-Heinz Jöckel
    Anders Knutsson
    Markku Koskenvuo
    Thorsten Lunau
    Martin L Nielsen
    Maria Nordin
    Tuula Oksanen
    Jan H Pejtersen
    Jaana Pentti
    Martin J Shipley
    Andrew Steptoe
    Sakari B Suominen
    Töres Theorell
    Jussi Vahtera
    Peter J M Westerholm
    Hugo Westerlund
    Nico Dragano
    Reiner Rugulies
    Ichiro Kawachi
    G David Batty
    Archana Singh-Manoux
    Marianna Virtanen
    Mika Kivimäki
    British Journal of Cancer, 2016, 114 : 813 - 818
  • [6] Long working hours and cancer risk: a multi-cohort study
    Heikkila, Katriina
    Nyberg, Solja T.
    Madsen, Ida E. H.
    de Vroome, Ernest
    Alfredsson, Lars
    Bjorner, Jacob J.
    Borritz, Marianne
    Burr, Hermann
    Erbel, Raimund
    Ferrie, Jane E.
    Fransson, Eleonor I.
    Geuskens, Goedele A.
    Hooftman, Wendela E.
    Houtman, Irene L.
    Joeckel, Karl-Heinz
    Knutsson, Anders
    Koskenvuo, Markku
    Lunau, Thorsten
    Nielsen, Martin L.
    Nordin, Maria
    Oksanen, Tuula
    Pejtersen, Jan H.
    Pentti, Jaana
    Shipley, Martin J.
    Steptoe, Andrew
    Suominen, Sakari B.
    Theorell, Toeres
    Vahtera, Jussi
    Westerholm, Peter J. M.
    Westerlund, Hugo
    Dragano, Nico
    Rugulies, Reiner
    Kawachi, Ichiro
    Batty, G. David
    Singh-Manoux, Archana
    Virtanen, Marianna
    Kivimaki, Mika
    BRITISH JOURNAL OF CANCER, 2016, 114 (07) : 813 - 818
  • [7] The inflammatory response-related robust machine learning signature in endometrial cancer: Based on multi-cohort studies
    Zhou, Chufan
    Xiang, Pan
    Xu, Xindi
    Yue, Chaomin
    Gao, Kefei
    JOURNAL OF GENE MEDICINE, 2024, 26 (01):
  • [8] Machine Learning-Assisted System for Thyroid Nodule Diagnosis
    Zhang, Bin
    Tian, Jie
    Pei, Shufang
    Chen, Yubing
    He, Xin
    Dong, Yuhao
    Zhang, Lu
    Mo, Xiaokai
    Huang, Wenhui
    Cong, Shuzhen
    Zhang, Shuixing
    THYROID, 2019, 29 (06) : 858 - 867
  • [9] Machine learning-based radiomics score improves prognostic prediction accuracy of stage II/III gastric cancer: A multi-cohort study
    Xiang, Ying-Hao
    Mou, Huan
    Qu, Bo
    Sun, Hui-Rong
    WORLD JOURNAL OF GASTROINTESTINAL SURGERY, 2024, 16 (02):
  • [10] Anti-Mullerian hormone and endometrial cancer: a multi-cohort study
    Fortner, Renee T.
    Schock, Helena
    Jung, Seungyoun
    Allen, Naomi E.
    Arslan, Alan A.
    Brinton, Louise A.
    Egleston, Brian L.
    Falk, Roni T.
    Gunter, Marc J.
    Helzlsouer, Kathy J.
    Idahl, Annika
    Johnson, Theron S.
    Kaaks, Rudolf
    Krogh, Vittorio
    Lundin, Eva
    Merritt, Melissa A.
    Navarro, Carmen
    Onland-Moret, N. Charlotte
    Palli, Domenico
    Shu, Xiao-Ou
    Sluss, Patrick M.
    Staats, Paul N.
    Trichopoulou, Antonia
    Weiderpass, Elisabete
    Zeleniuch-Jacquotte, Anne
    Zheng, Wei
    Dorgan, Joanne F.
    BRITISH JOURNAL OF CANCER, 2017, 117 (09) : 1412 - 1418