Fatigue durability of cracked steel beams retrofitted with high-strength materials

被引:19
|
作者
Yu, Qian-Qian [1 ,3 ]
Wu, Yu-Fei [2 ,3 ]
机构
[1] Tongji Univ, Dept Struct Engn, Shanghai, Peoples R China
[2] RMIT Univ, Sch Engn, Melbourne, Vic, Australia
[3] City Univ Hong Kong, Dept Architecture & Civil Engn, Hong Kong, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
High strength material; Fatigue; Steel beam; Strengthening; Stress intensity factor; Crack constraint; STRESS INTENSITY FACTOR; BONDED CFRP PLATES; METALLIC BEAMS; I-BEAMS; COMPOSITE PATCH; BEHAVIOR; GROWTH; REPAIR; DAMAGE;
D O I
10.1016/j.conbuildmat.2017.09.051
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Steel structures under dynamic loading are prone to fatigue damage and a considerable number of metallic infrastructure in the world are structurally deficient. The fatigue behavior of defected steel beams mechanically retrofitted by different high-strength materials was experimentally studied in this work. The steel beam was I section with an artificial cut at the mid-span and tested under fatigue loading. The specimens were strengthened on the tension flange by carbon fiber reinforced polymer (CFRP) laminate, high strength steel (HSS) plate or SafStrip (SAF) plate. Three mechanical anchorage schemes were designed to test their efficiencies. The fatigue crack propagation was recorded to explore the crack growth rate. Strain gauges were installed on the strengthening material to monitor the strain development. The stress intensity factor (SIF) at the crack front was calculated based on analytical solution and numerical simulation; then, the results were compared with experimental findings. It was demonstrated that the strengthening significantly increased the fatigue life of the beams. The attached strengthening materials not only globally shared a portion of the far-field load on the cracked steel section but also provided a local constraining effect, both of which reduced the crack mouth opening displacement (CMOD) and SIF. The different CMODs resulted from the different retrofitting configurations indicated significant variation in the crack constraining effect caused by various retrofitting systems, which cannot be neglected in analytical modeling. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1188 / 1197
页数:10
相关论文
共 50 条
  • [41] Flexural-torsional buckling of high-strength steel beams
    Bradford, Mark A.
    Liu, Xinpei
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2016, 124 : 122 - 131
  • [42] Experiments on the rotational capacity of beams made of high-strength steel
    Schillo, Nicole
    Feldmann, Markus
    STEEL CONSTRUCTION-DESIGN AND RESEARCH, 2018, 11 (01): : 42 - 48
  • [43] USE OF HIGH-STRENGTH STEEL FOR SIMPLY SUPPORTED BEAMS.
    Wechsler, Marius B.
    Engineering Journal, 1986, 23 (02): : 72 - 76
  • [44] Flexural behavior of high-strength steel hybrid composite beams
    Jun, Su-Chan
    Lee, Cheol-Ho
    Han, Kyu-Hong
    Kim, Jin-Won
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2018, 149 : 269 - 281
  • [45] Experimental studies on composite beams with high-strength steel and concrete
    Zhao, Huiling
    Yuan, Yong
    STEEL AND COMPOSITE STRUCTURES, 2010, 10 (05): : 373 - 383
  • [46] Buckling of welded high-strength steel I-beams
    Le, Tuan
    Bradford, Mark A.
    Liu, Xinpei
    Valipour, Hamid R.
    JOURNAL OF CONSTRUCTIONAL STEEL RESEARCH, 2020, 168
  • [47] EFFECT OF MATERIAL PROPERTIES ON WHEEL-DURABILITY OF HIGH-STRENGTH STEEL
    SEKINE, T
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1987, 73 (05): : S525 - S525
  • [48] Fatigue Behavior of Cracked High-Strength Steel Plates Strengthened by CFRP Sheets (vol 20, pg 388, 2016)
    Hu, Li Li
    Zhao, Xiao Ling
    Feng, Peng
    JOURNAL OF COMPOSITES FOR CONSTRUCTION, 2018, 22 (02)
  • [49] Durability Study of High-Strength Steel Fiber-Reinforced Concrete
    Sharma, Satish
    Arora, V. V.
    Kumar, Suresh
    Daniel, Y. N.
    Sharma, Ankit
    ACI MATERIALS JOURNAL, 2018, 115 (02) : 219 - 225
  • [50] EFFECT OF MATERIAL PROPERTIES ON WHEEL-DURABILITY OF HIGH-STRENGTH STEEL
    MIZUI, M
    SEKINE, T
    SONEDA, S
    TAKECHI, H
    TRANSACTIONS OF THE IRON AND STEEL INSTITUTE OF JAPAN, 1987, 27 (12) : B303 - B303