A posteriori error estimates for control problems governed by nonlinear elliptic equations

被引:43
|
作者
Liu, WB [1 ]
Yan, NN
机构
[1] Univ Kent, CBS & IMS, Canterbury CT2 7NF, Kent, England
[2] Chinese Acad Sci, Inst Syst Sci, Acad Math & Syst Sci, Beijing 100080, Peoples R China
关键词
nonlinear optimal control; finite element approximation; adaptive finite element methods; a posteriori error analysis;
D O I
10.1016/S0168-9274(03)00054-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we derive a posteriori error estimates for the finite element approximation of a class of nonlinear optimal control problems. We derive a posteriori error estimates for both the state and the control approximation. Such estimates, which are apparently not available in the literature, can be used to construct reliable adaptive finite element approximation schemes for the control problems. (C) 2003 IMACS. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 187
页数:15
相关论文
共 50 条
  • [41] Functional a posteriori error estimates for elliptic problems in exterior domains
    Pauly D.
    Repin S.
    [J]. Journal of Mathematical Sciences, 2009, 162 (3) : 393 - 406
  • [42] Star-Based a Posteriori Error Estimates for Elliptic Problems
    B. Achchab
    A. Agouzal
    N. Debit
    K. Bouihat
    [J]. Journal of Scientific Computing, 2014, 60 : 184 - 202
  • [43] Star-Based a Posteriori Error Estimates for Elliptic Problems
    Achchab, B.
    Agouzal, A.
    Debit, N.
    Bouihat, K.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 60 (01) : 184 - 202
  • [44] A posteriori error estimates for fourth-order elliptic problems
    Adjerid, S
    [J]. COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2002, 191 (23-24) : 2539 - 2559
  • [45] Residual type a posteriori error estimates for elliptic obstacle problems
    Zhiming Chen
    Ricardo H. Nochetto
    [J]. Numerische Mathematik, 2000, 84 : 527 - 548
  • [46] A posteriori error estimates for mixed approximations of degenerate elliptic problems
    Alvarez, Maria Luz
    Duran, Ricardo G.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2023, 188 : 146 - 159
  • [47] Advanced forms of functional a posteriori error estimates for elliptic problems
    Repin, S.
    [J]. RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2008, 23 (05) : 505 - 521
  • [48] Error estimates of mixed methods for optimal control problems governed by parabolic equations
    Xing, Xaoqing
    Chen, Yanping
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 75 (06) : 735 - 754
  • [49] A Posteriori Error Estimates of Two-Grid Finite Element Methods for Nonlinear Elliptic Problems
    Bi, Chunjia
    Wang, Cheng
    Lin, Yanping
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2018, 74 (01) : 23 - 48
  • [50] A Posteriori Error Estimates of Two-Grid Finite Element Methods for Nonlinear Elliptic Problems
    Chunjia Bi
    Cheng Wang
    Yanping Lin
    [J]. Journal of Scientific Computing, 2018, 74 : 23 - 48