Incorporating Uncertainty Into Multiscale Parameter Regionalization to Evaluate the Performance of Nationally Consistent Parameter Fields for a Hydrological Model

被引:16
|
作者
Lane, Rosanna A. [1 ,2 ]
Freer, Jim E. [1 ,3 ]
Coxon, Gemma [1 ]
Wagener, Thorsten [4 ,5 ]
机构
[1] Univ Bristol, Sch Geog Sci, Bristol, Avon, England
[2] UK Ctr Ecol & Hydrol, Wallingford, Oxon, England
[3] Univ Saskatchewan, Ctr Hydrol, Canmore, AB, Canada
[4] Univ Bristol, Dept Civil Engn, Bristol, Avon, England
[5] Univ Potsdam, Inst Environm Sci & Geog, Potsdam, Germany
基金
英国工程与自然科学研究理事会;
关键词
regionalization; parameterization; hydrological modeling; uncertainty; Great Britain; DECIPHeR; CLIMATE-CHANGE IMPACT; LAND-USE CHANGES; CATCHMENT MODEL; HYDRAULIC CONDUCTIVITY; PEDOTRANSFER FUNCTIONS; RUNOFF GENERATION; WATER FLUXES; PREDICTIONS; UK; EQUIFINALITY;
D O I
10.1029/2020WR028393
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatial parameter fields are required to model hydrological processes across diverse landscapes. Transfer functions are often used to relate parameters to spatial catchment attributes, introducing large uncertainties. Quantifying these uncertainties remains a key challenge for large-scale modeling. This paper extends the multiscale parameter regionalization (MPR) technique to consider parameter uncertainties. We evaluate this method of producing nationally consistent parameter fields, which maintain a constant relationship between model parameters and catchment attributes, across 437 catchments in Great Britain (GB). By sampling multiple transfer function parameters, we produce thousands of possible model parameter fields which are constrained within an uncertainty framework. This is compared to spatially homogeneous parameter sets constrained for individual catchments. The nationally consistent MPR parameter fields perform well (KGE* > 0.75) across 60% of catchments. Performance is similar or better than catchment-constrained parameters (KGE* drop < 0.1) across 82% of catchments. Advantages of our national parameter fields include (a) improved representation of flows within catchments, (b) more robust performance between calibration and evaluation periods, and (c) spatial parameter fields reflecting hydrologically meaningful variation in catchment characteristics. By including uncertainties, we show that hydrographs produced using MPR have smaller uncertainty bounds which are better able to encompass flows. As the first application of MPR to both the DECIPHeR modeling framework and GB, we developed transfer functions and identified key catchment attributes to constrain model parameters, which are transferrable to other models alongside the addition of uncertainty. Methodologies presented here are informative for future regionalization efforts in GB and elsewhere.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Impact of uncertainties in discharge determination on the parameter estimation and performance of a hydrological model
    van den Tillaart, Sander P. M.
    Booij, Martijn J.
    Krol, Maarten S.
    HYDROLOGY RESEARCH, 2013, 44 (03): : 454 - 466
  • [22] Parameter uncertainty, sensitivity analysis and prediction error in a water-balance hydrological model
    Benke, Kurt K.
    Lowell, Kim E.
    Hamilton, Andrew J.
    MATHEMATICAL AND COMPUTER MODELLING, 2008, 47 (11-12) : 1134 - 1149
  • [23] Parameter and modeling uncertainty simulated by GLUE and a formal Bayesian method for a conceptual hydrological model
    Jin, Xiaoli
    Xu, Chong-Yu
    Zhang, Qi
    Singh, V. P.
    JOURNAL OF HYDROLOGY, 2010, 383 (3-4) : 147 - 155
  • [24] Assessing the relative importance of parameter and forcing uncertainty and their interactions in conceptual hydrological model simulations
    Mockler, E. M.
    Chun, K. P.
    Sapriza-Azuri, G.
    Bruen, M.
    Wheater, H. S.
    ADVANCES IN WATER RESOURCES, 2016, 97 : 299 - 313
  • [25] Parallel Hydrological Model Parameter Uncertainty Analysis Based on Message-Passing Interface
    Yin, Zhaokai
    Liao, Weihong
    Lei, Xiaohui
    Wang, Hao
    WATER, 2020, 12 (10) : 1 - 14
  • [26] Incorporating Catchment Attributes Grouping into Model Parameter Regionalization To Enhance Root Zone Soil Moisture Estimation
    Li, Hongxia
    Zhao, Yuting
    Qi, Yongliang
    Jiang, Yanjia
    Boyer, Elizabeth W.
    Mello, Carlos R.
    Guo, Li
    WATER RESOURCES MANAGEMENT, 2025,
  • [27] Improving the Performance of Hydrological Model Parameter Uncertainty Analysis Using a Constrained Multi-Objective Intelligent Optimization Algorithm
    Liu, Xichen
    Kan, Guangyuan
    Ding, Liuqian
    He, Xiaoyan
    Liu, Ronghua
    Liang, Ke
    WATER, 2023, 15 (15)
  • [28] A Novel Method for Estimating Residual Model Parameters to Evaluate Uncertainty in Scattering Parameter Measurements
    Cho, Chihyun
    Kang, Tae-Weon
    Kwon, Jae-Yong
    Koo, Hyunji
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [29] Treating model inadequacy in fuel performance model calibration by parameter uncertainty inflation
    Robertson, Gustav
    Sjostrand, Henrik
    Andersson, Peter
    Hansson, Joachim
    Blair, Paul
    ANNALS OF NUCLEAR ENERGY, 2022, 179
  • [30] Parameter uncertainty analysis for large-scale hydrological model:challenges and comprehensive study framework
    Gou, Jiaojiao
    Miao, Chiyuan
    Xu, Zongxue
    Duan, Qingyun
    Shuikexue Jinzhan/Advances in Water Science, 2022, 33 (02): : 327 - 335