Incorporating Uncertainty Into Multiscale Parameter Regionalization to Evaluate the Performance of Nationally Consistent Parameter Fields for a Hydrological Model

被引:16
|
作者
Lane, Rosanna A. [1 ,2 ]
Freer, Jim E. [1 ,3 ]
Coxon, Gemma [1 ]
Wagener, Thorsten [4 ,5 ]
机构
[1] Univ Bristol, Sch Geog Sci, Bristol, Avon, England
[2] UK Ctr Ecol & Hydrol, Wallingford, Oxon, England
[3] Univ Saskatchewan, Ctr Hydrol, Canmore, AB, Canada
[4] Univ Bristol, Dept Civil Engn, Bristol, Avon, England
[5] Univ Potsdam, Inst Environm Sci & Geog, Potsdam, Germany
基金
英国工程与自然科学研究理事会;
关键词
regionalization; parameterization; hydrological modeling; uncertainty; Great Britain; DECIPHeR; CLIMATE-CHANGE IMPACT; LAND-USE CHANGES; CATCHMENT MODEL; HYDRAULIC CONDUCTIVITY; PEDOTRANSFER FUNCTIONS; RUNOFF GENERATION; WATER FLUXES; PREDICTIONS; UK; EQUIFINALITY;
D O I
10.1029/2020WR028393
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Spatial parameter fields are required to model hydrological processes across diverse landscapes. Transfer functions are often used to relate parameters to spatial catchment attributes, introducing large uncertainties. Quantifying these uncertainties remains a key challenge for large-scale modeling. This paper extends the multiscale parameter regionalization (MPR) technique to consider parameter uncertainties. We evaluate this method of producing nationally consistent parameter fields, which maintain a constant relationship between model parameters and catchment attributes, across 437 catchments in Great Britain (GB). By sampling multiple transfer function parameters, we produce thousands of possible model parameter fields which are constrained within an uncertainty framework. This is compared to spatially homogeneous parameter sets constrained for individual catchments. The nationally consistent MPR parameter fields perform well (KGE* > 0.75) across 60% of catchments. Performance is similar or better than catchment-constrained parameters (KGE* drop < 0.1) across 82% of catchments. Advantages of our national parameter fields include (a) improved representation of flows within catchments, (b) more robust performance between calibration and evaluation periods, and (c) spatial parameter fields reflecting hydrologically meaningful variation in catchment characteristics. By including uncertainties, we show that hydrographs produced using MPR have smaller uncertainty bounds which are better able to encompass flows. As the first application of MPR to both the DECIPHeR modeling framework and GB, we developed transfer functions and identified key catchment attributes to constrain model parameters, which are transferrable to other models alongside the addition of uncertainty. Methodologies presented here are informative for future regionalization efforts in GB and elsewhere.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Parameter regionalization of the FLEX-Global hydrological model
    Jingjing Wang
    Hongkai Gao
    Min Liu
    Yongjian Ding
    Yan Wang
    Fang Zhao
    Jun Xia
    Science China Earth Sciences, 2021, 64 : 571 - 588
  • [2] Parameter regionalization of the FLEX-Global hydrological model
    Wang, Jingjing
    Gao, Hongkai
    Liu, Min
    Ding, Yongjian
    Wang, Yan
    Zhao, Fang
    Xia, Jun
    SCIENCE CHINA-EARTH SCIENCES, 2021, 64 (04) : 571 - 588
  • [3] Parameter regionalization of the FLEX-Global hydrological model
    Jingjing WANG
    Hongkai GAO
    Min LIU
    Yongjian DING
    Yan WANG
    Fang ZHAO
    Jun XIA
    Science China(Earth Sciences), 2021, 64 (04) : 571 - 588
  • [4] Using an ensemble smoother to evaluate parameter uncertainty of an integrated hydrological model of Yanqi basin
    Li, Ning
    McLaughlin, Dennis
    Kinzelbach, Wolfgang
    Li, WenPeng
    Dong, XinGuang
    JOURNAL OF HYDROLOGY, 2015, 529 : 146 - 158
  • [5] Research on Parameter Regionalization of Distributed Hydrological Model Based on Machine Learning
    Wang, Wenchuan
    Zhao, Yanwei
    Tu, Yong
    Dong, Rui
    Ma, Qiang
    Liu, Changjun
    WATER, 2023, 15 (03)
  • [6] Multiscale parameter regionalization of a grid-based hydrologic model at the mesoscale
    Samaniego, Luis
    Kumar, Rohini
    Attinger, Sabine
    WATER RESOURCES RESEARCH, 2010, 46
  • [7] Incorporating model parameter uncertainty into inverse treatment planning
    Lian, J
    Xing, L
    MEDICAL PHYSICS, 2004, 31 (09) : 2711 - 2720
  • [8] Responses of hydrological model equifinality, uncertainty, and performance to multi-objective parameter calibration
    Her, Younggu
    Seong, Chounghyun
    JOURNAL OF HYDROINFORMATICS, 2018, 20 (04) : 864 - 885
  • [9] Hydrological model sensitivity to parameter and radar rainfall estimation uncertainty
    Hossain, F
    Anagnostou, EN
    Dinku, T
    Borga, M
    HYDROLOGICAL PROCESSES, 2004, 18 (17) : 3277 - 3291
  • [10] Multiscale modeling of failure in composites under model parameter uncertainty
    Bogdanor, Michael J.
    Oskay, Caglar
    Clay, Stephen B.
    COMPUTATIONAL MECHANICS, 2015, 56 (03) : 389 - 404