A Unified Maximum Likelihood Approach for Estimating Symmetric Properties of Discrete Distributions

被引:0
|
作者
Acharya, Jayadev [1 ]
Das, Hirakendu [2 ]
Orlitsky, Alon [3 ]
Suresh, Ananda Theertha [4 ]
机构
[1] Cornell Univ, Ithaca, NY 14853 USA
[2] Yahoo Inc, Sunnyvale, CA 94089 USA
[3] Univ Calif San Diego, La Jolla, CA 92093 USA
[4] Google Res, Mountain View, CA 94043 USA
关键词
MINIMAX ESTIMATION; SAMPLE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Symmetric distribution properties such as support size, support coverage, entropy, and proximity to uniformity, arise in many applications. Recently, researchers applied different estimators and analysis tools to derive asymptotically sample-optimal approximations for each of these properties. We show that a single, simple, plug-in estimator-profile maximum likelihood (PML)- is sample competitive for all symmetric properties, and in particular is asymptotically sample-optimal for all the above properties.
引用
收藏
页数:11
相关论文
共 50 条