Large Eddy Simulations of the Dusty Martian Convective Boundary Layer With MarsWRF

被引:20
|
作者
Wu, Zhaopeng [1 ,2 ]
Richardson, Mark, I [3 ]
Zhang, Xi [4 ]
Cui, Jun [1 ,2 ,5 ]
Heavens, Nicholas G. [6 ,7 ]
Lee, Christopher [3 ,8 ]
Li, Tao [2 ,9 ]
Lian, Yuan [3 ]
Newman, Claire E. [3 ]
Soto, Alejandro [10 ]
Temel, Orkun [11 ,12 ]
Toigo, Anthony D. [13 ]
Witek, Marcin [14 ]
机构
[1] Sun Yat Sen Univ, Sch Atmospher Sci, Planetary Environm & Astrobiol Res Lab, Zhuhai, Peoples R China
[2] CAS Ctr Excellence Comparat Planetol, Hefei, Peoples R China
[3] Aeolis Res, Chandler, AZ USA
[4] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA
[5] Chinese Acad Sci, Natl Astron Observ, CAS Key Lab Lunar & Deep Space Explorat, Beijing, Peoples R China
[6] Space Sci Inst, Boulder, CO USA
[7] Imperial Coll, Dept Earth Sci & Engn, London, England
[8] Univ Toronto, Dept Phys, Toronto, ON, Canada
[9] Univ Sci & Technol China, Sch Earth & Space Sci, CAS Key Lab Geospace Environm, Hefei, Peoples R China
[10] Southwest Res Inst, Boulder, CO USA
[11] Katholieke Univ Leuven, Inst Astron, Leuven, Belgium
[12] Royal Observ Belgium, Brussels, Belgium
[13] Johns Hopkins Univ, Appl Phys Lab, Laurel, MD USA
[14] Jet Prop Lab, Pasadena, CA USA
基金
中国国家自然科学基金;
关键词
Martian atmosphere; large eddy simulation; convective boundary layer; dust inhomogeneity; radiative-dynamical feedback; STORMS; ATMOSPHERE; SURFACE; MODEL; CIRCULATION; RESOLUTION; IMPACT; DISSIPATION; PATHFINDER; DYNAMICS;
D O I
10.1029/2020JE006752
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Large eddy simulation (LES) of the Martian convective boundary layer (CBL) with a Mars-adapted version of the Weather Research and Forecasting model is used to examine the impact of aerosol dust radiative-dynamical feedbacks on turbulent mixing. The LES is validated against spacecraft observations and prior modeling. To study dust redistribution by coherent dynamical structures within the CBL, two radiatively active dust distribution scenarios are used: one in which the dust distribution remains fixed and another in which dust is freely transported by CBL motions. In the fixed dust scenario, increasing atmospheric dust loading shades the surface from sunlight and weakens convection. However, a competing effect emerges in the free dust scenario, resulting from the lateral concentration of dust in updrafts. The resulting enhancement of dust radiative heating in upwelling plumes both generates horizontal thermal contrasts in the CBL and increases buoyancy production, jointly enhancing CBL convection. We define a dust inhomogeneity index (DII) to quantify how much dust is concentrated in upwelling plumes. If the DII is large enough, the destabilizing effect of lateral heating contrasts can exceed the stabilizing effect of surface shading such that the CBL depth increases with increasing dust optical depth. Thus, under certain combinations of total dust optical depth and the lateral inhomogeneity of dust, a positive feedback exists between dust optical depth, the vigor and depth of CBL mixing, and-to the extent that dust lifting is controlled by the depth and vigor of CBL mixing-the further lifting of dust from the surface.
引用
收藏
页数:47
相关论文
共 50 条
  • [41] The TKE budget in the convective Martian planetary boundary layer
    Martinez, G. M.
    Valero, F.
    Vazquez, L.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2011, 137 (661) : 2194 - 2208
  • [42] Large-eddy simulations of subharmonic transition in a supersonic boundary layer
    Stolz, Steffen
    Schlatter, Philipp
    Kleiser, Leonhard
    [J]. AIAA Journal, 2007, 45 (05): : 1019 - 1027
  • [43] Large-Eddy Simulations of the Steady Wintertime Antarctic Boundary Layer
    van der Linden, Steven J. A.
    Edwards, John M.
    van Heerwaarden, Chief C.
    Vignon, Etienne
    Genthon, Christophe
    Petenko, Igor
    Baas, Peter
    Jonker, Harmen J. J.
    van de Wiel, Bas J. H.
    [J]. BOUNDARY-LAYER METEOROLOGY, 2019, 173 (02) : 165 - 192
  • [44] Large-eddy simulations of subharmonic transition in a supersonic boundary layer
    Stolz, Steffen
    Schlatter, Philipp
    Kleiser, Leonhard
    [J]. AIAA JOURNAL, 2007, 45 (05) : 1019 - 1027
  • [45] Large-Eddy Simulations of the Steady Wintertime Antarctic Boundary Layer
    Steven J. A. van der Linden
    John M. Edwards
    Chiel C. van Heerwaarden
    Etienne Vignon
    Christophe Genthon
    Igor Petenko
    Peter Baas
    Harmen J. J. Jonker
    Bas J. H. van de Wiel
    [J]. Boundary-Layer Meteorology, 2019, 173 : 165 - 192
  • [46] A thermal plume model for the Martian convective boundary layer
    Colaitis, A.
    Spiga, A.
    Hourdin, F.
    Rio, C.
    Forget, F.
    Millour, E.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2013, 118 (07) : 1468 - 1487
  • [47] Comparative statistical analysis of convective marine boundary layers: Observations and large eddy simulations
    Gluhovsky, A
    Agee, EM
    [J]. EIGHTH CONFERENCE ON AIR-SEA INTERACTION AND CONFERENCE ON THE GLOBAL OCEAN-ATMOSPHERE-LAND SYSTEM (GOALS), 1996, : 18 - 20
  • [48] Large-Eddy Simulations of Convective Boundary Layers over Flat and Urbanlike Surfaces
    Park, Seung-Bu
    Baik, Jong-Jin
    [J]. JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (05) : 1880 - 1892
  • [49] Entrainment parametrization in convective boundary layers derived from large-eddy simulations
    vanZanten, MC
    Duynkerke, PG
    [J]. 12TH SYMPOSIUM ON BOUNDARY LAYERS AND TURBULENCE, 1997, : 98 - 99
  • [50] Inter-comparison of retrieved wind fields from large-eddy simulations and radar measurements in the convective boundary layer
    Scipion, Danny
    Botnick, Aaron
    Palmer, Robert
    Chilson, Phillip
    Fedorovich, Evgeni
    [J]. 14TH INTERNATIONAL SYMPOSIUM FOR THE ADVANCEMENT OF BOUNDARY LAYER REMOTE SENSING, 2008, 1