Notes on q-Hermite based unified Apostol type polynomials

被引:8
|
作者
Nisar, Kottakkaran Sooppy [1 ]
Khan, W. A. [2 ]
机构
[1] Prince Sattam Bin Abdulaziz Univ, Coll Arts & Sci, Dept Math, Wadi Aldawaser 11991, Saudi Arabia
[2] Prince Mohammad Bin Fahd Univ, Dept Math & Nat Sci, POB 1664, Al Khobar 31952, Saudi Arabia
关键词
q-Hermite type polynomials; q-unified Apostol type polynomials; q-Hermite-based unified Apostol type polynomials; BERNOULLI; EULER;
D O I
10.1080/09720502.2019.1709317
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, a new class of q-Hermite based unified Apostol type polynomials is introduced by means of generating function and series representation. Several important formulas and recurrence relations for these polynomials are derived via different generating methods. We also introduce q-analog of Stirling numbers of second kind of order v by which we construct a relation including aforementioned polynomials.
引用
收藏
页码:1185 / 1203
页数:19
相关论文
共 50 条
  • [1] Notes on Unified q-Apostol-Type Polynomials
    Kurt, Burak
    [J]. FILOMAT, 2016, 30 (04) : 921 - 927
  • [2] MORE ON Q-HERMITE POLYNOMIALS
    DEBERGH, N
    [J]. MODERN PHYSICS LETTERS A, 1994, 9 (37) : 3481 - 3486
  • [3] Generalized q-hermite polynomials
    Berg, C
    Ruffing, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 223 (01) : 29 - 46
  • [4] Generalized q-Hermite Polynomials
    Christian Berg
    Andreas Ruffing
    [J]. Communications in Mathematical Physics, 2001, 223 : 29 - 46
  • [5] More on q-Hermite Polynomials
    Debergh, N.
    [J]. Modern Physics Letter A, 1994, 9 (37):
  • [6] q-Dunkl-classical q-Hermite type polynomials
    Ben Cheikh, Youssef
    Gaied, Mohamed
    Zaghouani, Ali
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2014, 21 (02) : 125 - 137
  • [7] Q-hermite polynomials and classical orthogonal polynomials
    Berg, C
    Ismail, MEH
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1996, 48 (01): : 43 - 63
  • [8] SOME RESULTS ON q-HERMITE BASED HYBRID POLYNOMIALS
    Riyasat, Mumtaz
    Khan, Subuhi
    [J]. GLASNIK MATEMATICKI, 2018, 53 (01) : 9 - 31
  • [9] SOME PROPERTIES OF THE Q-HERMITE POLYNOMIALS
    ALLAWAY, WR
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1980, 32 (03): : 686 - 694
  • [10] On Rodriguez representations for discrete q-Hermite polynomials of type II
    Ey, K
    Ruffing, A
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2004, 13 (3-4): : 397 - 407