Generalized q-Hermite Polynomials

被引:0
|
作者
Christian Berg
Andreas Ruffing
机构
[1] Department of Mathematics,
[2] University of Copenhagen,undefined
[3] Universitetsparken 5,undefined
[4] 2100 Copenhagen,undefined
[5] ¶Denmark. E-mail: berg@math.ku.dk,undefined
[6] Zentrum Mathematik,undefined
[7] Technische Universität München,undefined
[8] Arcisstrasse 21,undefined
[9] 80333 München,undefined
[10] Germany.¶E-mail: ruffing@appl-math.tu-muenchen.de,undefined
来源
关键词
Hilbert Space; Orthogonal Polynomial; Real Parameter; Formal Adjoint; Ladder Operator;
D O I
暂无
中图分类号
学科分类号
摘要
We consider two operators A and A+ in a Hilbert space of functions on the exponential lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}, where 0<q<1. The operators are formal adjoints of each other and depend on a real parameter \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. We show how these operators lead to an essentially unique symmetric ground state ψ0 and that A and A+ are ladder operators for the sequence \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}\end{document}. The sequence (ψn/ψ0) is shown to be a family of orthogonal polynomials, which we identify as symmetrized q-Laguerre polynomials. We obtain in this way a new proof of the orthogonality for these polynomials. When γ=0 the polynomials are the discrete q-Hermite polynomials of type II, studied in several papers on q-quantum mechanics.
引用
收藏
页码:29 / 46
页数:17
相关论文
共 50 条