orthogonal polynomials in several variables;
cubature formulae;
summability;
orthogonal expansions;
symmetric group;
octahedral group;
D O I:
10.1016/S0377-0427(00)00504-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We report on recent developments on orthogonal polynomials and cubature formulae on the unit ball B-d, the standard simplex T-d, and the unit sphere S-d. The main result shows that orthogonal structures and cubature formulae for these three regions are closely related. This provides a way to study the structure of orthogonal polynomials; for example, it allows us to use the theory of h-harmonics to study orthogonal polynomials on B-d and on T-d. It also provides a way to construct new cubature formulae on these regions. (C) 2001 Elsevier Science B.V. All rights reserved.
机构:
Univ Hassan II Casablanca, Fac Sci & Technol, Lab LMCMAN, BP 146, Mohammadia 20650, MoroccoUniv Hassan II Casablanca, Fac Sci & Technol, Lab LMCMAN, BP 146, Mohammadia 20650, Morocco
Abouir, Jilali
Benouahmane, Brahim
论文数: 0引用数: 0
h-index: 0
机构:
Univ Hassan II Casablanca, Fac Sci & Technol, Lab LMCMAN, BP 146, Mohammadia 20650, MoroccoUniv Hassan II Casablanca, Fac Sci & Technol, Lab LMCMAN, BP 146, Mohammadia 20650, Morocco
机构:
John Paul II Catholic Univ Lublin, Inst Math & Comp Sci, Ul Konstantynow 1H, PL-20708 Lublin, PolandJohn Paul II Catholic Univ Lublin, Inst Math & Comp Sci, Ul Konstantynow 1H, PL-20708 Lublin, Poland
Rutka, Przemyslaw
Smarzewski, Ryszard
论文数: 0引用数: 0
h-index: 0
机构:
John Paul II Catholic Univ Lublin, Inst Math & Comp Sci, Ul Konstantynow 1H, PL-20708 Lublin, PolandJohn Paul II Catholic Univ Lublin, Inst Math & Comp Sci, Ul Konstantynow 1H, PL-20708 Lublin, Poland