The development of HJ SAR soil moisture retrieval algorithm

被引:26
|
作者
Du, Jinyang [1 ,2 ]
Shi, Jiancheng [1 ,2 ,3 ]
Sun, Ruijing [1 ,2 ]
机构
[1] Chinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing Applicat, Beijing 100101, Peoples R China
[2] Beijing Normal Univ, Beijing 100101, Peoples R China
[3] Univ Calif Santa Barbara, Inst Computat Earth Syst Sci, Santa Barbara, CA 93106 USA
关键词
SURFACE-ROUGHNESS; MODEL; SCATTERING; RADAR; STABILITY; INVERSION; EMISSION; MIMICS; SMEX02; ANGLE;
D O I
10.1080/01431161.2010.483486
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Four satellites with S-band synthetic aperture radar (SAR) onboard, along with four optical satellites, form the Huan Jing (HJ) constellation, which consists of the Chinese Environment and Disaster Monitoring Satellites that are designed for fast monitoring of the dynamics of soil moisture and other environmental variables. A 24-hour revisit time of the future four HJ SAR satellites enables an estimation of soil moisture change by using multi-temporal observations. The algorithm for estimating soil moisture change has been developed for HJ SAR in four steps: (a) theoretical simulation of radar backscattering from vegetated and bare soil with first-order scattering model and the Advanced Integral Equation Method (AIEM); (b) vegetation correction based on a simplified scattering model and ancillary optical observations of the HJ constellation; (c) simplification of a radar backscattering model for bare soil to separate the effects of surface roughness and soil moisture; and (d) estimation of soil moisture change from multi-temporal SAR observations. The comparison between field measurements and soil moisture retrieved by the proposed algorithm demonstrates good accuracy.
引用
收藏
页码:3691 / 3705
页数:15
相关论文
共 50 条
  • [31] RETRIEVAL OF FOREST STRUCTURE AND MOISTURE FROM SAR DATA USING AN ESTIMATION ALGORITHM
    Clewley, D.
    Moghaddam, M.
    Lucas, R.
    Bunting, P.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 153 - 156
  • [32] Speckle Noise and Soil Heterogeneities as Error Sources in a Bayesian Soil Moisture Retrieval Scheme for SAR Data
    Barber, Matias
    Grings, Francisco
    Perna, Pablo
    Piscitelli, Marcela
    Maas, Martin
    Bruscantini, Cintia
    Jacobo-Berlles, Julio
    Karszenbaum, Haydee
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (03) : 942 - 951
  • [33] FIRST GLANCE ON A REVISED SMOS SOIL MOISTURE RETRIEVAL ALGORITHM: EVALUATION WITH RESPECT TO ECMWF SOIL MOISTURE SIMULATIONS
    Al-Yaari, A.
    Fernandez-Moran, R.
    Wigneron, J. -P.
    Mialon, A.
    Mahmoodi, A.
    Al Bitar, A.
    Kerr, Y.
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 1566 - 1569
  • [34] Development of surface roughness and soil moisture retrieval algorithm using passive microwave remote sensing data
    Wang S.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2021, 50 (10): : 1419
  • [35] Development of a Neural Network based Algorithm for Multi-Scale Roughness Parameters and Soil Moisture Retrieval
    Farah, L. Bennaceur
    Farah, I. R.
    Bennaceur, R.
    Belhadj, Z.
    Boussema, M. R.
    PROCEEDINGS OF WORLD ACADEMY OF SCIENCE, ENGINEERING AND TECHNOLOGY, VOL 17, 2006, 17 : 141 - 146
  • [36] Sequential Ensembles Tolerant to Synthetic Aperture Radar (SAR) Soil Moisture Retrieval Errors
    Lee, Ju Hyoung
    GEOSCIENCES, 2016, 6 (02)
  • [37] SOIL MOISTURE RETRIEVAL OVER GRASSLAND USING X-BAND SAR DATA
    El-Hajj, Mohammad
    Baghdadi, Nicolas
    Belaud, Gilles
    Zribi, Mehrez
    Cheviron, Bruno
    Courault, Dominique
    Charron, Francois
    2014 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2014, : 3638 - 3641
  • [38] Soil Moisture Retrieval Using Polarimetric SAR Data and Experimental Observations in an Arid Environment
    Gharechelou, Saeid
    Tateishi, Ryutaro
    Sumantyo, Josaphat Tetuko Sri
    Johnson, Brian Alan
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2021, 10 (10)
  • [39] Soil moisture retrieval in farmland using C-band SAR and optical data
    Zhao X.
    Huang N.
    Niu Z.
    Raghavan V.
    Song X.
    Spatial Information Research, 2017, 25 (3) : 431 - 438
  • [40] Soil moisture retrieval in mining-disturbed areas with temporal high resolution SAR
    Ma, Wei
    Liu, Weiwei
    Ma, Chao
    INTERNATIONAL CONFERENCE ON ENERGY ENGINEERING AND ENVIRONMENTAL PROTECTION (EEEP2017), 2018, 121