On a Hele-Shaw Flow Problem with Free and Solid Boundary Components

被引:1
|
作者
Kohr, Mirela [1 ]
Pintea, Cornel [1 ]
机构
[1] Babes Bolyai Univ, Fac Math & Comp Sci, 1 M Kogalniceanu Str, Cluj Napoca 400084, Romania
关键词
Hele-Shaw flow problem; Dirichlet-Neumann boundary value problem; Newtonian and boundary layer potentials; Lipschitz domain; Sobolev spaces; LAPLACE EQUATION; SYSTEMS; REGULARITY; BRINKMAN; STOKES; FLUID;
D O I
10.1007/s11785-017-0719-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of this work is to study a one phase Hele-Shaw fluid flow occupying a time variable domain , due to the injection of the fluid with a constant rate at a single point of the initial domain , and in the presence of a fixed solid body . We show the short time existence and uniqueness of the solution for the corresponding boundary value problem in the three dimensional case and in the absence of surface tension.
引用
收藏
页码:1729 / 1746
页数:18
相关论文
共 50 条
  • [41] A dynamical mother body in a Hele-Shaw problem
    Savina, T. V.
    Nepomnyashchy, A. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2011, 240 (14-15) : 1156 - 1163
  • [42] Optimal Control by Multipoles in the Hele-Shaw Problem
    Lev Lokutsievskiy
    Vincent Runge
    Journal of Mathematical Fluid Mechanics, 2015, 17 : 261 - 277
  • [43] Optimal Control by Multipoles in the Hele-Shaw Problem
    Lokutsievskiy, Lev
    Runge, Vincent
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2015, 17 (02) : 261 - 277
  • [44] A Hele-Shaw problem and the second Painleve transcendent
    Fokas, AS
    Tanveer, S
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1998, 124 : 169 - 191
  • [45] A SIMPLIFIED PROOF FOR A MOVING BOUNDARY-PROBLEM FOR HELE-SHAW FLOWS IN THE PLANE
    REISSIG, M
    VONWOLFERSDORF, L
    ARKIV FOR MATEMATIK, 1993, 31 (01): : 101 - 116
  • [46] TRANSLATION SOLUTIONS OF PROBLEM OF SLOW DIPHASE FLOW IN A HELE-SHAW CANAL
    BATAILLE, J
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1968, 266 (15): : 785 - &
  • [47] Asymptotic properties of solutions to the Hele-Shaw problem
    Kuznetsova, OS
    Tkachev, VG
    DOKLADY AKADEMII NAUK, 1999, 367 (02) : 164 - 165
  • [48] Asymptotic convergence of the Stefan problem to Hele-Shaw
    Quirós, F
    Vázquez, JL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 353 (02) : 609 - 634
  • [49] FLOW NEAR BOUNDARIES IN A HELE-SHAW MODEL
    THIRRIOT, C
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1969, 269 (24): : 1167 - &
  • [50] Parallel flow in Hele-Shaw cells with ferrofluids
    Miranda, JA
    Widom, M
    PHYSICAL REVIEW E, 2000, 61 (02): : 2114 - 2117