Online parameter identification of facet growth kinetics in crystal morphology population balance models

被引:3
|
作者
Duerr, Robert [1 ]
Palis, Stefan [1 ]
Kienle, Achim [1 ,2 ]
机构
[1] Univ Magdeburg, Univ Pl 2, D-39106 Magdeburg, Germany
[2] Max Planck Inst Dynam Complex Tech Syst, D-39106 Magdeburg, Germany
关键词
Multivariate population balance modeling; Crystal morphology; Crystallization; Online parameter identification; L-GLUTAMIC ACID; CRYSTALLIZATION;
D O I
10.1016/j.proeng.2015.01.264
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Particle shape plays an important role in many industrial applications since it can have significant impact on both, processability of particles as well as the properties of the final product. For this reason modeling of the corresponding production process is crucial for developing efficient process optimization and control strategies. The shape evolution of crystals on the process scale can be described conveniently within the framework of morphological population balance modeling. In order of being a reliable tool for the prediction of the crystal shape distribution during the production process as well as for the design of suitable control and optimal production strategies, the models require the estimation of several parameters characterizing the growth rates of the different crystal facets. This is particularly challenging due to the infinite dimensional state space of the models. In this contribution online parameter estimation for the growth rates of L-glutamic acid cooling crystallization is presented. Using a Lyapunov-based approach the parameter adaption laws are computed directly from the infinite dimensional problem formulation. It will be shown that a reasonably fast convergence of the parameter estimates can be achieved even in the presence of measurement noise using appropriate filters. (C) 2015 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:1336 / 1345
页数:10
相关论文
共 50 条
  • [21] Non local balance laws in traffic models and crystal growth
    Colombo, Rinaldo M.
    Corli, Andrea
    Rosini, Massimiliano D.
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2007, 87 (06): : 449 - 461
  • [22] Numerical analysis and parameter identification during Czochralski crystal growth
    Wilke, H
    ADVANCED COMPUTATIONAL METHODS IN HEAT TRANSER VII, 2002, 4 : 243 - 248
  • [23] Single drop experiments for parameter estimation for simulation with drop population balance models
    Bart, HJ
    Modes, G
    Bröder, D
    CHEMIE INGENIEUR TECHNIK, 1999, 71 (03) : 246 - 249
  • [24] Parameter identifiability and model selection for sigmoid population growth models
    Simpson, Matthew J.
    Browning, Alexander P.
    Warne, David J.
    Maclaren, Oliver J.
    Baker, Ruth E.
    JOURNAL OF THEORETICAL BIOLOGY, 2022, 535
  • [25] Crystal growth rate dispersion modeling using morphological population balance
    Ma, Cai Y.
    Wang, Xue Z.
    AICHE JOURNAL, 2008, 54 (09) : 2321 - 2334
  • [26] PARAMETER IDENTIFICATION IN A RANDOM ENVIRONMENT EXEMPLIFIED BY A MULTISCALE MODEL FOR CRYSTAL GROWTH
    Capasso, Vincenzo
    Engl, Heinz W.
    Kindermann, Stefan
    MULTISCALE MODELING & SIMULATION, 2008, 7 (02): : 814 - 841
  • [27] Crystallization kinetics of lactose recovered at sub-zero temperatures: A population balance model combining mutarotation, nucleation and crystal growth
    Halfwerk, Ruben
    Yntema, Doekle
    Van Spronsen, Jaap
    Keesman, Karel
    Van der Padt, Albert
    JOURNAL OF FOOD ENGINEERING, 2023, 345
  • [28] Bayesian Parameter Identification in Cahn-Hilliard Models for Biological Growth
    Kahle, Christian
    Lam, Kei Fong
    Latz, Jonas
    Ullmann, Elisabeth
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2019, 7 (02): : 526 - 552
  • [29] Effects of anisotropic interfacial kinetics on morphology stability of deep cellular crystal growth
    Sun Si-Jie
    Jiang Han
    ACTA PHYSICA SINICA, 2024, 73 (11)
  • [30] Identification of geometrical models of interface evolution for dendritic crystal growth
    Zhao, Y.
    Coca, D.
    Billings, S. A.
    Ristic, R. I.
    De Matos, L. L.
    PHYSICS LETTERS A, 2011, 375 (07) : 1084 - 1091