Identifiability and Estimation of Partially Observed Influence Models

被引:0
|
作者
Zhao, Lu [1 ]
Wan, Yan [1 ]
机构
[1] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA
来源
基金
美国国家科学基金会;
关键词
Estimation; Markov processes; Hidden Markov models; Indexes; Computational modeling; Spatiotemporal phenomena; Transportation; Stochastic networks; partially-observed influence model; identifiability; parameter estimation;
D O I
10.1109/LCSYS.2022.3184958
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The influence model (IM) is a discrete-time stochastic model that captures the spatiotemporal dynamics of networked Markov chains. Partially-observed IM (POIM) is an IM in which the statuses for some sites are unobserved. Identifiability and estimation of POIMs from incomplete state information are critical for POIM applications. In this letter, we develop a new estimation algorithm for both homogeneous and heterogeneous POIMs. The method, called EM-JMPE, integrates expectation maximization (EM) and joint-margin probability estimation (JMPE) to achieve reduced computation. In addition, we study the identifiability of POIMs by exploring the reduced-size joint-margin matrix, based on which necessary conditions for both homogeneous and heterogeneous POIMs are provided. The simulation studies verify the developed results.
引用
收藏
页码:3385 / 3390
页数:6
相关论文
共 50 条
  • [21] Parameter Identifiability and Estimation of HIV/AIDS Dynamic Models
    Hulin Wu
    Haihong Zhu
    Hongyu Miao
    Alan S. Perelson
    Bulletin of Mathematical Biology, 2008, 70 : 785 - 799
  • [22] Unbiased estimation of the Hessian for partially observed diffusions
    Chada, Neil K.
    Jasra, Ajay
    Yu, Fangyuan
    arXiv, 2021,
  • [23] Assessing Ecosystem State Space Models: Identifiability and Estimation
    J. W. Smith
    L. R. Johnson
    R. Q. Thomas
    Journal of Agricultural, Biological and Environmental Statistics, 2023, 28 : 442 - 465
  • [24] Identifiability and Comparison of Estimation Methods on Weibull Mixture Models
    Vladimirovna Panteleeva, Olga
    Gutierrez Gonzalez, Eduardo
    Vaquera Huerta, Humberto
    Villasenor Alva, Jose A.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2015, 44 (07) : 1879 - 1900
  • [25] Identifiability and estimation of recursive max-linear models
    Gissibl, Nadine
    Klueppelberg, Claudia
    Lauritzen, Steffen
    SCANDINAVIAN JOURNAL OF STATISTICS, 2021, 48 (01) : 188 - 211
  • [26] Identifiability and Consistent Estimation for Gaussian Chain Graph Models
    Zhao, Ruixuan
    Zhang, Haoran
    Wang, Junhui
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2024, 119 (548) : 3101 - 3112
  • [27] Parameter identifiability and estimation of HIV/AIDS dynamic models
    Wu, Hulin
    Zhu, Haihong
    Miao, Hongyu
    Perelson, Alan S.
    BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (03) : 785 - 799
  • [28] Estimation in partially linear models
    Eubank, R.L.
    Kambour, E.L.
    Kim, J.T.
    Klipple, K.
    Reese, C.S.
    Schimek, M.
    Computational Statistics and Data Analysis, 1998, 29 (01): : 27 - 34
  • [29] Estimation in partially linear models
    Eubank, RL
    Kambour, EL
    Kim, JT
    Klipple, K
    Reese, CS
    Schimek, M
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 1998, 29 (01) : 27 - 34
  • [30] Effects of unobserved and partially observed covariate processes on system failure: A review of models and estimation strategies
    Yashin, AI
    Manton, KG
    STATISTICAL SCIENCE, 1997, 12 (01) : 20 - 34