Identifiability and Estimation of Partially Observed Influence Models

被引:0
|
作者
Zhao, Lu [1 ]
Wan, Yan [1 ]
机构
[1] Univ Texas Arlington, Dept Elect Engn, Arlington, TX 76019 USA
来源
基金
美国国家科学基金会;
关键词
Estimation; Markov processes; Hidden Markov models; Indexes; Computational modeling; Spatiotemporal phenomena; Transportation; Stochastic networks; partially-observed influence model; identifiability; parameter estimation;
D O I
10.1109/LCSYS.2022.3184958
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The influence model (IM) is a discrete-time stochastic model that captures the spatiotemporal dynamics of networked Markov chains. Partially-observed IM (POIM) is an IM in which the statuses for some sites are unobserved. Identifiability and estimation of POIMs from incomplete state information are critical for POIM applications. In this letter, we develop a new estimation algorithm for both homogeneous and heterogeneous POIMs. The method, called EM-JMPE, integrates expectation maximization (EM) and joint-margin probability estimation (JMPE) to achieve reduced computation. In addition, we study the identifiability of POIMs by exploring the reduced-size joint-margin matrix, based on which necessary conditions for both homogeneous and heterogeneous POIMs are provided. The simulation studies verify the developed results.
引用
收藏
页码:3385 / 3390
页数:6
相关论文
共 50 条
  • [1] Structural and practical identifiability analysis of partially observed dynamical models by exploiting the profile likelihood
    Raue, A.
    Kreutz, C.
    Maiwald, T.
    Bachmann, J.
    Schilling, M.
    Klingmueller, U.
    Timmer, J.
    BIOINFORMATICS, 2009, 25 (15) : 1923 - 1929
  • [2] Maximum likelihood estimation of partially observed diffusion models
    Kleppe, Tore Selland
    Yu, Jun
    Skaug, Hans J.
    JOURNAL OF ECONOMETRICS, 2014, 180 (01) : 73 - 80
  • [4] Estimation of hidden Markov models for a partially observed risk sensitive control problem
    Frankpitt, B
    Baras, JS
    KYBERNETIKA, 1998, 34 (06) : 739 - 746
  • [5] On Unbiased Estimation for Partially Observed Diffusions
    Heng, Jeremy
    Houssineau, Jeremie
    Jasra, Ajay
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 66
  • [6] UNIQUENESS OF ESTIMATION AND IDENTIFIABILITY IN MIXTURE-MODELS
    LINDSAY, BG
    ROEDER, K
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1993, 21 (02): : 139 - 147
  • [7] Identifiability in robust estimation of tree structured models
    Casanellas, Marta
    Garrote-Lopez, Marina
    Zwiernik, Piotr
    BERNOULLI, 2024, 30 (01) : 1 - 21
  • [8] Semiparametric hidden Markov models: identifiability and estimation
    Dannemann, Joern
    Holzmann, Hajo
    Leister, Anna
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2014, 6 (06): : 418 - 425
  • [9] IDENTIFIABILITY OF PARAMETERS IN LATENT STRUCTURE MODELS WITH MANY OBSERVED VARIABLES
    Allman, Elizabeth S.
    Matias, Catherine
    Rhode, John A.
    ANNALS OF STATISTICS, 2009, 37 (6A): : 3099 - 3132
  • [10] Maximum likelihood estimation of continuous time stochastic volatility models with partially observed GARCH
    Niu, Wei-Fang
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2013, 17 (04): : 421 - 438