End-to-end Music-mixed Speech Recognition

被引:0
|
作者
Woo, Jeongwoo [1 ]
Mimura, Masato [1 ]
Yoshii, Kazuyoshi [1 ]
Kawahara, Tatsuya [1 ]
机构
[1] Kyoto Univ, Kyoto, Japan
关键词
SEPARATION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Automatic speech recognition (ASR) in multimedia content is one of the promising applications, but speech data in this kind of content are frequently mixed with background music, which is harmful for the performance of ASR. In this study, we propose a method for improving ASR with background music based on time-domain source separation. We utilize Conv-TasNet as a separation network, which has achieved state-of-the-art performance for multi-speaker source separation, to extract the speech signal from a speech-music mixture in the waveform domain. We also propose joint fine-tuning of a pre-trained Conv-TasNet front-end with an attention-based ASR back-end using both separation and ASR objectives. We evaluated our method through ASR experiments using speech data mixed with background music from a wide variety of Japanese animations. We show that time-domain speech-music separation drastically improves ASR performance of the back-end model trained with mixture data, and the joint optimization yielded a further significant WER reduction. The time-domain separation method outperformed a frequency-domain separation method, which reuses the phase information of the input mixture signal, both in simple cascading and joint training settings. We also demonstrate that our method works robustly for music interference from classical, jazz and popular genres.
引用
收藏
页码:800 / 804
页数:5
相关论文
共 50 条
  • [1] End-to-End Speech Recognition in Russian
    Markovnikov, Nikita
    Kipyatkova, Irina
    Lyakso, Elena
    SPEECH AND COMPUTER (SPECOM 2018), 2018, 11096 : 377 - 386
  • [2] END-TO-END MULTIMODAL SPEECH RECOGNITION
    Palaskar, Shruti
    Sanabria, Ramon
    Metze, Florian
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5774 - 5778
  • [3] Overview of end-to-end speech recognition
    Wang, Song
    Li, Guanyu
    2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS AND CONTROL ENGINEERING (ISPECE 2018), 2019, 1187
  • [4] End-to-end Accented Speech Recognition
    Viglino, Thibault
    Motlicek, Petr
    Cernak, Milos
    INTERSPEECH 2019, 2019, : 2140 - 2144
  • [5] Multichannel End-to-end Speech Recognition
    Ochiai, Tsubasa
    Watanabe, Shinji
    Hori, Takaaki
    Hershey, John R.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [6] END-TO-END AUDIOVISUAL SPEECH RECOGNITION
    Petridis, Stavros
    Stafylakis, Themos
    Ma, Pingchuan
    Cai, Feipeng
    Tzimiropoulos, Georgios
    Pantic, Maja
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 6548 - 6552
  • [7] END-TO-END ANCHORED SPEECH RECOGNITION
    Wang, Yiming
    Fan, Xing
    Chen, I-Fan
    Liu, Yuzong
    Chen, Tongfei
    Hoffmeister, Bjorn
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7090 - 7094
  • [8] IMPROVING UNSUPERVISED STYLE TRANSFER IN END-TO-END SPEECH SYNTHESIS WITH END-TO-END SPEECH RECOGNITION
    Liu, Da-Rong
    Yang, Chi-Yu
    Wu, Szu-Lin
    Lee, Hung-Yi
    2018 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2018), 2018, : 640 - 647
  • [9] END-TO-END TRAINING OF A LARGE VOCABULARY END-TO-END SPEECH RECOGNITION SYSTEM
    Kim, Chanwoo
    Kim, Sungsoo
    Kim, Kwangyoun
    Kumar, Mehul
    Kim, Jiyeon
    Lee, Kyungmin
    Han, Changwoo
    Garg, Abhinav
    Kim, Eunhyang
    Shin, Minkyoo
    Singh, Shatrughan
    Heck, Larry
    Gowda, Dhananjaya
    2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 562 - 569
  • [10] SYNCHRONOUS TRANSFORMERS FOR END-TO-END SPEECH RECOGNITION
    Tian, Zhengkun
    Yi, Jiangyan
    Bai, Ye
    Tao, Jianhua
    Zhang, Shuai
    Wen, Zhengqi
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 7884 - 7888