END-TO-END AUDIOVISUAL SPEECH RECOGNITION

被引:0
|
作者
Petridis, Stavros [1 ]
Stafylakis, Themos [2 ]
Ma, Pingchuan [1 ]
Cai, Feipeng [1 ]
Tzimiropoulos, Georgios [2 ]
Pantic, Maja [1 ]
机构
[1] Imperial Coll London, Dept Comp, London, England
[2] Univ Nottingham, Comp Vis Lab, Nottingham, England
基金
欧盟地平线“2020”;
关键词
Audiovisual Speech Recognition; Residual Networks; End-to-End Training; BGRUs; Audiovisual Fusion;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Several end-to-end deep learning approaches have been recently presented which extract either audio or visual features from the input images or audio signals and perform speech recognition. However, research on end-to-end audiovisual models is very limited. In this work, we present an end-to-end audiovisual model based on residual networks and Bidirectional Gated Recurrent Units (BGRUs). To the best of our knowledge, this is the first audiovisual fusion model which simultaneously learns to extract features directly from the image pixels and audio waveforms and performs within-context word recognition on a large publicly available dataset (LRW). The model consists of two streams, one for each modality, which extract features directly from mouth regions and raw waveforms. The temporal dynamics in each stream/modality are modeled by a 2-layer BGRU and the fusion of multiple streams/modalities takes place via another 2-layer BGRU. A slight improvement in the classification rate over an end-to-end audio-only and MFCC-based model is reported in clean audio conditions and low levels of noise. In presence of high levels of noise, the end-to-end audiovisual model significantly outperforms both audio-only models.
引用
下载
收藏
页码:6548 / 6552
页数:5
相关论文
共 50 条
  • [1] Mutual Alignment between Audiovisual Features for End-to-End Audiovisual Speech Recognition
    Liu, Hong
    Wang, Yawei
    Yang, Bing
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 5348 - 5353
  • [2] End-to-End Audiovisual Speech Recognition System With Multitask Learning
    Tao, Fei
    Busso, Carlos
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 1 - 11
  • [3] End-to-End Speech Recognition in Russian
    Markovnikov, Nikita
    Kipyatkova, Irina
    Lyakso, Elena
    SPEECH AND COMPUTER (SPECOM 2018), 2018, 11096 : 377 - 386
  • [4] END-TO-END MULTIMODAL SPEECH RECOGNITION
    Palaskar, Shruti
    Sanabria, Ramon
    Metze, Florian
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 5774 - 5778
  • [5] Overview of end-to-end speech recognition
    Wang, Song
    Li, Guanyu
    2018 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS AND CONTROL ENGINEERING (ISPECE 2018), 2019, 1187
  • [6] Multichannel End-to-end Speech Recognition
    Ochiai, Tsubasa
    Watanabe, Shinji
    Hori, Takaaki
    Hershey, John R.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [7] End-to-end Accented Speech Recognition
    Viglino, Thibault
    Motlicek, Petr
    Cernak, Milos
    INTERSPEECH 2019, 2019, : 2140 - 2144
  • [8] END-TO-END ANCHORED SPEECH RECOGNITION
    Wang, Yiming
    Fan, Xing
    Chen, I-Fan
    Liu, Yuzong
    Chen, Tongfei
    Hoffmeister, Bjorn
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 7090 - 7094
  • [9] IMPROVING UNSUPERVISED STYLE TRANSFER IN END-TO-END SPEECH SYNTHESIS WITH END-TO-END SPEECH RECOGNITION
    Liu, Da-Rong
    Yang, Chi-Yu
    Wu, Szu-Lin
    Lee, Hung-Yi
    2018 IEEE WORKSHOP ON SPOKEN LANGUAGE TECHNOLOGY (SLT 2018), 2018, : 640 - 647
  • [10] END-TO-END TRAINING OF A LARGE VOCABULARY END-TO-END SPEECH RECOGNITION SYSTEM
    Kim, Chanwoo
    Kim, Sungsoo
    Kim, Kwangyoun
    Kumar, Mehul
    Kim, Jiyeon
    Lee, Kyungmin
    Han, Changwoo
    Garg, Abhinav
    Kim, Eunhyang
    Shin, Minkyoo
    Singh, Shatrughan
    Heck, Larry
    Gowda, Dhananjaya
    2019 IEEE AUTOMATIC SPEECH RECOGNITION AND UNDERSTANDING WORKSHOP (ASRU 2019), 2019, : 562 - 569