Connecting Information Geometry and Geometric Mechanics

被引:10
|
作者
Leok, Melvin [1 ]
Zhang, Jun [2 ]
机构
[1] Univ Calif San Diego, Dept Math, La Jolla, CA 92093 USA
[2] Univ Michigan, Dept Psychol & Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会;
关键词
Lagrangian; Hamiltonian; Legendre map; symplectic form; divergence function; generating function; Hessian manifold; DIRAC STRUCTURES; DUALITY;
D O I
10.3390/e19100518
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The divergence function in information geometry, and the discrete Lagrangian in discrete geometric mechanics each induce a differential geometric structure on the product manifold Q x Q. We aim to investigate the relationship between these two objects, and the fundamental role that duality, in the form of Legendre transforms, plays in both fields. By establishing an analogy between these two approaches, we will show how a fruitful cross-fertilization of techniques may arise from switching formulations based on the cotangent bundle T* Q (as in geometric mechanics) and the tangent bundle TQ (as in information geometry). In particular, we establish, through variational error analysis, that the divergence function agrees with the exact discrete Lagrangian up to third order if and only if Q is a Hessian manifold.
引用
收藏
页数:31
相关论文
共 50 条
  • [21] CONNECTING THE EDUCATION IN ALGEBRA AND GEOMETRY
    Mavrova, Rumiyana
    Rangelova, Penka
    MATHEMATICS AND INFORMATICS, 2016, 59 (02): : 183 - 192
  • [22] Geometric continuum mechanics
    Giovanni Romano
    Raffaele Barretta
    Marina Diaco
    Meccanica, 2014, 49 : 111 - 133
  • [23] Geometric quantum mechanics
    Brody, DC
    Hughston, LP
    JOURNAL OF GEOMETRY AND PHYSICS, 2001, 38 (01) : 19 - 53
  • [24] Geometric continuum mechanics
    Romano, Giovanni
    Barretta, Raffaele
    Diaco, Marina
    MECCANICA, 2014, 49 (01) : 111 - 133
  • [25] Geometric mechanics - Preface
    Constantin, Adrian
    Kolev, Boris
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2007, 19 (03) : I - II
  • [26] Koszul Information Geometry and Souriau Geometric Temperature/Capacity of Lie Group Thermodynamics
    Barbaresco, Frederic
    ENTROPY, 2014, 16 (08) : 4521 - 4565
  • [27] Geometry Three Ways: An fMRI Investigation of Geometric Information Processing During Reorientation
    Sutton, Jennifer E.
    Twyman, Alexandra D.
    Joanisse, Marc F.
    Newcombe, Nora S.
    JOURNAL OF EXPERIMENTAL PSYCHOLOGY-LEARNING MEMORY AND COGNITION, 2012, 38 (06) : 1530 - 1541
  • [28] On the geometry of geometric rank
    Geng, Runshi
    Landsberg, Joseph M.
    ALGEBRA & NUMBER THEORY, 2022, 16 (05) : 1141 - 1160
  • [29] Intracellular mechanics: connecting rheology and mechanotransduction
    Mathieu, Samuel
    Manneville, Jean-Baptiste
    CURRENT OPINION IN CELL BIOLOGY, 2019, 56 : 34 - 44
  • [30] Connecting filament mechanics in the relaxed sarcomere
    EKATERINA NAGORNYAK
    GERALD H. POLLACK
    Journal of Muscle Research & Cell Motility, 2005, 26 : 303 - 306