Automated, deep reactive ion etching free fiber coupling to nanophotonic devices

被引:2
|
作者
Flassig, Fabian [1 ,2 ]
Flaschmann, Rasmus [1 ,3 ]
Kainz, Thomas [1 ,2 ]
Ernst, Sven [1 ,2 ]
Strohauer, Stefan [1 ,2 ]
Schmid, Christian [1 ,3 ]
Zugliani, Lucio [1 ,3 ]
Mueller, Kai [1 ,3 ]
Finley, Jonathan J. [1 ,2 ]
机构
[1] Tech Univ Munich, Walter Schottky Inst, D-85748 Garching, Germany
[2] Tech Univ Munich, Phys Dept, D-85748 Garching, Germany
[3] Tech Univ Munich, Dept Elect & Comp Engn, D-85748 Garching, Germany
关键词
QD; Fiber coupling; Interconnection; Fiber-to-chip; SNSPD; SSPD; DRIE; QUANTUM KEY DISTRIBUTION; DETECTOR;
D O I
10.1117/12.2611160
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Rapid development in integrated optoelectronic devices and quantum photonic architectures creates a need for optical fiber to chip coupling with low losses. Here we present a fast and generic approach that allows temperature stable self-aligning connections of nanophotonic devices to optical fibers. We show that the attainable precision of our approach is equal to that of DRIE-process based couplings. Specifically, the initial alignment precision is 1.2 +/- 0.4 mu m, the average shift caused by mating < 0.5 mu m, which is in the order of the precision of the concentricity of the employed fiber, and the thermal cycling stability is < 0.2 mu m. From these values the expected overall alignment offset is calculated as 1.4 +/- 0.4 mu m. These results show that our process offers an easy to implement, versatile, robust and DRIE-free method for coupling photonic devices to optical fibers. It can be fully automated and is therefore scalable for coupling to novel devices for quantum photonic systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Planarize the sidewall ripples of silicon deep reactive ion etching
    Weng, KY
    Wang, MY
    Tsai, PH
    NSTI NANOTECH 2004, VOL 1, TECHNICAL PROCEEDINGS, 2004, : 473 - 476
  • [32] Challenges, developments and applications of silicon deep reactive ion etching
    Laermer, F
    Urban, A
    MICROELECTRONIC ENGINEERING, 2003, 67-8 : 349 - 355
  • [33] Characterization of the microloading effect in deep reactive ion etching of silicon
    Jensen, S
    Hansen, O
    MICROMACHINING AND MICROFABRICATION PROCESS TECHNOLOGY IX, 2004, 5342 : 111 - 118
  • [34] Deep reactive ion etching characteristics of a macromachined chemical reactor
    Besser, RS
    Shin, WC
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (02): : 912 - 915
  • [35] Superhydrophobic surfaces by dynamic nanomasking and deep reactive ion etching
    Song, Ying
    Zou, Min
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART N-JOURNAL OF NANOMATERIALS NANOENGINEERING AND NANOSYSTEMS, 2007, 221 (02) : 41 - 48
  • [36] ANNEALING BEHAVIOR OF REACTIVE ION ETCHING INDUCED DEEP LEVELS
    MISRA, D
    HEASELL, EL
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1990, 137 (05) : 1559 - 1563
  • [37] Wafer Bevel Protection During Deep Reactive Ion Etching
    Charavel, Remy
    Roig, Jaume
    Altamirano-Sanchez, Efrain
    van Aelst, Joke
    Devriendt, Katia
    van Wichelen, Koen
    Gassot, Pierre
    Coppens, Peter
    De Backer, Eddy
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2011, 24 (02) : 358 - 365
  • [38] Silicon Deep Reactive Ion Etching with aluminum hard mask
    Bagolini, Alvise
    Scauso, Pietro
    Sanguinetti, Stefano
    Bellutti, Pierluigi
    MATERIALS RESEARCH EXPRESS, 2019, 6 (08):
  • [39] Process characterisation of deep reactive ion etching for microfluidic application
    Chien Mau Dang
    Ngan Nguyen Le
    Khanh Kim Huynh
    Hue Cam Thi Phan
    Dung My Thi Dang
    Fribourg-Blanc, Eric
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2018, 15 (1-3) : 145 - 156
  • [40] Atomic layer deposition enhanced rapid dry fabrication of micromechanical devices with cryogenic deep reactive ion etching
    Chekurov, N.
    Koskenvuori, M.
    Airaksinen, V-M
    Tittonen, I.
    JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2007, 17 (08) : 1731 - 1736