On the Grundy Number of a Graph

被引:0
|
作者
Havet, Frederic [1 ]
Sampaio, Leonardo [1 ]
机构
[1] UNSA, CNRS, I3S, Projet Mascotte, F-06902 Sophia Antipolis, France
来源
关键词
Colouring; Online Colouring; Greedy Colouring; NP-completeness; Fixed Parameter Complexity;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The Grundy number of a graph G, denoted by Gamma(G), is the largest k such that G has a greedy k-colouring, that is a colouring with k colours obtained by applying the greedy algorithm according to some ordering of the vertices of G. Trivially Gamma(G) <= Delta(G) + 1. In this paper, we show that deciding if Gamma(G) <= Delta(G) is NP-complete. We then show that deciding if Gamma(G) >= vertical bar V(G)vertical bar - k is fixed parameter tractable with respect to the parameter k.
引用
收藏
页码:170 / 179
页数:10
相关论文
共 50 条
  • [21] On the Grundy and b-Chromatic Numbers of a Graph
    Havet, Frederic
    Sampaio, Leonardo
    ALGORITHMICA, 2013, 65 (04) : 885 - 899
  • [22] Bounds for the Grundy chromatic number of graphs in terms of domination number
    Khaleghi, Abbas
    Zaker, Manouchehr
    arXiv, 2022,
  • [23] New Bounds on the Grundy Number of Products of Graphs
    Campos, Victor
    Gyarfas, Andras
    Havet, Frederic
    Sales, Claudia Linhares
    Maffray, Frederic
    JOURNAL OF GRAPH THEORY, 2012, 71 (01) : 78 - 88
  • [24] Grundy chromatic number of the complement of bipartite graphs
    Zaker, Manouchehr
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2005, 31 : 325 - 329
  • [25] Graphs with equal Grundy domination and independence number
    Bacso, Gabor
    Bresar, Bostjan
    Kuenzel, Kirsti
    Rall, Douglas F.
    DISCRETE OPTIMIZATION, 2023, 48
  • [26] ON GRUNDY TOTAL DOMINATION NUMBER IN PRODUCT GRAPHS
    Bresar, Bostjan
    Bujtas, Csilla
    Gologranc, Tanja
    Klavzar, Sandi
    Kosmrlj, Gasper
    Marc, Tilen
    Patkos, Balazs
    Tuza, Zsolt
    Vizer, Mate
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2021, 41 (01) : 225 - 247
  • [27] On the Grundy number of graphs with few P4's
    Araujo, J.
    Linhares Sales, C.
    DISCRETE APPLIED MATHEMATICS, 2012, 160 (18) : 2514 - 2522
  • [28] An integer programming approach for solving a generalized version of the Grundy domination number
    Campelo, Manoel
    Severin, Daniel
    DISCRETE APPLIED MATHEMATICS, 2021, 301 : 26 - 48
  • [29] On the detour number and geodetic number of a graph
    Chartrand, G
    Johns, GL
    Zhang, P
    ARS COMBINATORIA, 2004, 72 : 3 - 15
  • [30] Some comparative results concerning the Grundy and b-chromatic number of graphs
    Masih, Zoya
    Zaker, Manouchehr
    DISCRETE APPLIED MATHEMATICS, 2022, 306 : 1 - 6