Biosignals learning and synthesis using deep neural networks

被引:26
|
作者
Belo, David [1 ]
Rodrigues, Joao [1 ]
Vaz, Joao R. [2 ,3 ,4 ]
Pezarat-Correia, Pedro [2 ]
Gamboa, Hugo [1 ]
机构
[1] Univ Nova Lisboa, LIBPhys Lab Instrumentat Biomed Engn & Radiat Phy, Fac Ciencias & Tecnol, P-2829516 Caparica, Portugal
[2] Univ Lisbon, Lab Motor Behav, CIPER, Fac Motricidade Humana, Estrada Costa, P-1499002 Cruz Quebrada Dafundo, Portugal
[3] Laureate Int Univ, Univ Europeia, Lisbon, Portugal
[4] Sport Lisboa & Benf, Benf Lab, Lisbon, Portugal
关键词
Neural networks; DNN; GRU; Synthesis; Biosignals; ECG; EMG; RESP;
D O I
10.1186/s12938-017-0405-0
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background: Modeling physiological signals is a complex task both for understanding and synthesize biomedical signals. We propose a deep neural network model that learns and synthesizes biosignals, validated by the morphological equivalence of the original ones. This research could lead the creation of novel algorithms for signal reconstruction in heavily noisy data and source detection in biomedical engineering field. Method: The present work explores the gated recurrent units (GRU) employed in the training of respiration (RESP), electromyograms (EMG) and electrocardiograms (ECG). Each signal is pre-processed, segmented and quantized in a specific number of classes, corresponding to the amplitude of each sample and fed to the model, which is composed by an embedded matrix, three GRU blocks and a softmax function. This network is trained by adjusting its internal parameters, acquiring the representation of the abstract notion of the next value based on the previous ones. The simulated signal was generated by forecasting a random value and re-feeding itself. Results and conclusions: The resulting generated signals are similar with the morphological expression of the originals. During the learning process, after a set of iterations, the model starts to grasp the basic morphological characteristics of the signal and later their cyclic characteristics. After training, these models' prediction are closer to the signals that trained them, specially the RESP and ECG. This synthesis mechanism has shown relevant results that inspire the use to characterize signals from other physiological sources.
引用
收藏
页数:17
相关论文
共 50 条
  • [21] STATISTICAL PARAMETRIC SPEECH SYNTHESIS USING DEEP NEURAL NETWORKS
    Zen, Heiga
    Senior, Andrew
    Schuster, Mike
    2013 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2013, : 7962 - 7966
  • [22] Learning with Deep Photonic Neural Networks
    Leelar, Bhawani Shankar
    Shivaleela, E. S.
    Srinivas, T.
    2017 IEEE WORKSHOP ON RECENT ADVANCES IN PHOTONICS (WRAP), 2017,
  • [23] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1633 - 1638
  • [24] Deep Learning with Random Neural Networks
    Gelenbe, Erol
    Yin, Yongha
    PROCEEDINGS OF SAI INTELLIGENT SYSTEMS CONFERENCE (INTELLISYS) 2016, VOL 2, 2018, 16 : 450 - 462
  • [25] Deep learning in spiking neural networks
    Tavanaei, Amirhossein
    Ghodrati, Masoud
    Kheradpisheh, Saeed Reza
    Masquelier, Timothee
    Maida, Anthony
    NEURAL NETWORKS, 2019, 111 : 47 - 63
  • [26] Deep learning in neural networks: An overview
    Schmidhuber, Juergen
    NEURAL NETWORKS, 2015, 61 : 85 - 117
  • [27] Artificial neural networks and deep learning
    Geubbelmans, Melvin
    Rousseau, Axel-Jan
    Burzykowski, Tomasz
    Valkenborg, Dirk
    AMERICAN JOURNAL OF ORTHODONTICS AND DENTOFACIAL ORTHOPEDICS, 2024, 165 (02) : 248 - 251
  • [28] Shortcut learning in deep neural networks
    Robert Geirhos
    Jörn-Henrik Jacobsen
    Claudio Michaelis
    Richard Zemel
    Wieland Brendel
    Matthias Bethge
    Felix A. Wichmann
    Nature Machine Intelligence, 2020, 2 : 665 - 673
  • [29] Fast learning in Deep Neural Networks
    Chandra, B.
    Sharma, Rajesh K.
    NEUROCOMPUTING, 2016, 171 : 1205 - 1215
  • [30] Deep associative learning for neural networks
    Liu, Jia
    Zhang, Wenhua
    Liu, Fang
    Xiao, Liang
    NEUROCOMPUTING, 2021, 443 (443) : 222 - 234