A posteriori error estimation in maximum norm for a two-point boundary value problem with a Riemann-Liouville fractional derivative

被引:26
|
作者
Cen, Zhongdi [1 ]
Liu, Li-Bin [2 ]
Huang, Jian [1 ]
机构
[1] Zhejiang Wanli Univ, Inst Math, Ningbo 315100, Zhejiang, Peoples R China
[2] Nanning Normal Univ, Sch Math & Stat, Nanning 530023, Guangxi, Peoples R China
基金
美国国家科学基金会;
关键词
Riemann-Liouville fractional derivative; Boundary value problem; Gronwall inequality; A posteriori error estimate; SYSTEM; MESHES;
D O I
10.1016/j.aml.2019.106086
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Riemann-Liouville two-point boundary value problem is considered. An integral discretization scheme is developed to approximate the Volterra integral equation transformed from the Rieinann-Liouville boundary value problem. The stability results and a posteriori error analysis are given. A solution-adaptive algorithm based on a posteriori error analysis is designed by equidistributing arc-length monitor function. Numerical experiments are presented to support the theoretical result. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条