MoO3 structures transition from nanoflowers to nanorods and their sensing performances

被引:42
|
作者
Hu, Li-Bin [1 ]
Huang, Xin-Yu [1 ]
Zhang, Shan [1 ]
Chen, Xue [2 ]
Dong, Xian-Hui [3 ]
Jin, He [1 ]
Jiang, Zhen-Yu [1 ]
Gong, Xiao-Ran [1 ]
Xie, Yi-Xuan [1 ]
Li, Chen [1 ]
Chi, Zong-Tao [1 ]
Xie, Wan-Feng [1 ,3 ]
机构
[1] Qingdao Univ, State Key Lab Biofibers & Ecotext, Sch Elect & Informat, Qingdao 266071, Peoples R China
[2] Chinese Acad Sci, Inst Semicond, Engn Res Ctr Semicond Integrated Technol, Beijing 100083, Peoples R China
[3] Qingdao Univ, Sch Mat Sci & Engn, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
40;
D O I
10.1007/s10854-021-06464-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Morphology transformation and crystal growth strategies of metal oxide semiconductors are still extensively studied in material science recently, because the morphology and crystallinity significantly affect the physicochemical characteristics of metal oxide nanomaterials. However, understanding the morphology changes of alpha-MoO3 induced by annealing is still a challenge. Herein, the nanostructure transition of alpha-MoO3 induced by the annealing temperature is carefully investigated via the XRD and SEM methods. It can be found that crystallization is highly dependent on the annealing temperature. Interestingly, the MoO3 nanoflowers can change into nanosheets at 500 degrees C. Afterward, the nanosheets turned into microrods with the increase in annealing temperature due to the continuous growth of MoO3 crystal. On the other hand, the sensing performances of various MoO3 nanostructures are studied toward ethanol gas. Compared to the MoO3 nanoflowers and microrods, the MoO3 nanosheets-based sensor exhibits superior sensing performance to ethanol, and the maximum response value is 8.06.
引用
收藏
页码:23728 / 23736
页数:9
相关论文
共 50 条
  • [41] Non-enzymatic glucose sensing properties of MoO3 nanorods: experimental and density functional theory investigations
    Sharma, Maneesha
    Gangan, Abhijeet
    Chakraborty, Brahmananda
    Rout, Chandra Sekhar
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (47)
  • [42] Comparison of tribological performances of plasma sprayed YSZ, YSZ/Ag, YSZ/MoO3 and YSZ/Ag/MoO3 coatings from 25 to 800 °C
    Bai, Liuyang
    Yi, Gewen
    Wan, Shanhong
    Wang, Wenzhen
    Sun, Huwei
    [J]. WEAR, 2023, 526-527
  • [43] Electron microscopy characterization of hexagonal molybdenum trioxide (MoO3) nanorods
    Ramana, C. V.
    Troitskaia, I. B.
    Atuchin, V. V.
    Ramos, M.
    Ferrer, D.
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A, 2010, 28 (04): : 726 - 729
  • [44] Characterization of MoO3 nanorods for lithium battery using PVP as a surfactant
    Reddy, Ch. V. Subba
    Walker, Edwin H., Jr.
    Wicker, S. A., Sr.
    Williams, Quinton L.
    Kalluru, Rajamohan R.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2009, 13 (12) : 1945 - 1949
  • [45] High Performance One Dimensional α-MoO3 Nanorods for Supercapacitor Applications
    Prakash, N. Guru
    Dhananjaya, M.
    Narayana, A. Lakshmi
    Shaik, Dadamiah P. M. D.
    Rosaiah, P.
    Hussain, O. M.
    [J]. CERAMICS INTERNATIONAL, 2018, 44 (08) : 9967 - 9975
  • [46] Characterization of MoO3 nanorods for lithium battery using PVP as a surfactant
    Ch. V. Subba Reddy
    Edwin H. Walker
    S. A. Wicker
    Quinton L. Williams
    Rajamohan R. Kalluru
    [J]. Journal of Solid State Electrochemistry, 2009, 13 : 1945 - 1949
  • [47] Synthesis of pyramidal and prismatic hexagonal MoO3 nanorods using thiourea
    Kumar, Vipin
    Wang, Xu
    Lee, Pooi See
    [J]. CRYSTENGCOMM, 2013, 15 (38): : 7663 - 7669
  • [48] Laser-induced thermal effects in hexagonal MoO3 nanorods
    Silveira, J. V.
    Moura, J. V. B.
    Luz-Lima, C.
    Freire, P. T. C.
    Souza Filho, A. G.
    [J]. VIBRATIONAL SPECTROSCOPY, 2018, 98 : 145 - 151
  • [49] Water-splitting application of orthorhombic molybdite α-MoO3 nanorods
    Swathi, S.
    Ravi, G.
    Yuvakkumar, R.
    Hong, S., I
    Babu, E. Sunil
    Velauthapillai, Dhayalan
    Kumar, P.
    [J]. CERAMICS INTERNATIONAL, 2020, 46 (14) : 23218 - 23222
  • [50] Fabrication and electrochemical OER activity of Ag doped MoO3 nanorods
    Rani, B. Jansi
    Ravi, G.
    Yuvakkumar, R.
    Ameen, Fuad
    AlNadhari, Saleh
    Hong, S., I
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2020, 107