Fuzzy C-means method with empirical mode decomposition for clustering microarray data

被引:0
|
作者
Wang, Yan-Fei [1 ]
Yu, Zu-Guo [1 ,2 ]
Anh, Vo [1 ]
机构
[1] Queensland Univ Technol, Fac Sci & Technol, Discipline Math Sci, Brisbane, Qld 4001, Australia
[2] Xiangtan Univ, Sch Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
来源
2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE | 2010年
基金
澳大利亚研究理事会;
关键词
Microarray data clustering; fuzzy C-means method; empirical mode decomposition;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Microarray techniques have revolutionized genomic research by making it possible to monitor the expression of thousands of genes in parallel. Data clustering analysis has been extensively applied to extract information from gene expression profiles obtained with DNA microarrays. Existing clustering approaches, mainly developed in computer science, have been adapted to microarray data. Among these approaches, fuzzy C-means (FCM) method is an efficient one. However, microarray data contains noise and the noise would affect clustering results. Some clustering structure still can be found from random data without any biological significance. In this paper, we propose to combine the FCM method with the empirical mode decomposition (EMD) for clustering microarray data in order to reduce the effect of the noise. We call this method fuzzy C-means method with empirical mode decomposition (FCM-EMD). Using the FCM-EMD method on gene microarray data, we obtained better results than those using FCM only. The results suggest the clustering structures of denoised data are more reasonable and genes have tighter association with their clusters. Denoised gene data without any biological information contains no cluster structure. We find that we can avoid estimating the fuzzy parameter.. in some degree by analyzing denoised microarray data. This makes clustering more efficient. Using the FCM-EMD method to analyze gene microarray data can save time and obtain more reasonable results.
引用
收藏
页码:192 / 197
页数:6
相关论文
共 50 条
  • [31] Application of Fuzzy c-Means Clustering in Data Analysis of Metabolomics
    Li, Xiang
    Lu, Xin
    Tian, Jing
    Gao, Peng
    Kong, Hongwei
    Xu, Guowang
    ANALYTICAL CHEMISTRY, 2009, 81 (11) : 4468 - 4475
  • [32] Cluster Forests Based Fuzzy C-Means for Data Clustering
    Ben Ayed, Abdelkarim
    Ben Halima, Mohamed
    Alimi, Adel M.
    INTERNATIONAL JOINT CONFERENCE SOCO'16- CISIS'16-ICEUTE'16, 2017, 527 : 564 - 573
  • [33] Extended fuzzy c-means: an analyzing data clustering problems
    S. Ramathilagam
    R. Devi
    S. R. Kannan
    Cluster Computing, 2013, 16 : 389 - 406
  • [34] On Tolerant Fuzzy c-Means Clustering
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2009, 13 (04) : 421 - 428
  • [35] Parallel fuzzy c-means clustering for large data sets
    Kwok, T
    Smith, K
    Lozan, S
    Taniar, D
    EURO-PAR 2002 PARALLEL PROCESSING, PROCEEDINGS, 2002, 2400 : 365 - 374
  • [36] Extended fuzzy c-means: an analyzing data clustering problems
    Ramathilagam, S.
    Devi, R.
    Kannan, S. R.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2013, 16 (03): : 389 - 406
  • [37] Fuzzy c-means clustering of partially missing data sets
    Hathaway, RJ
    Overstreet, DD
    Bezdek, JC
    APPLICATIONS AND SCIENCE OF COMPUTATIONAL INTELLIGENCE III, 2000, 4055 : 159 - 165
  • [38] A Robust Fuzzy c-Means Clustering Algorithm for Incomplete Data
    Li, Jinhua
    Song, Shiji
    Zhang, Yuli
    Li, Kang
    INTELLIGENT COMPUTING, NETWORKED CONTROL, AND THEIR ENGINEERING APPLICATIONS, PT II, 2017, 762 : 3 - 12
  • [39] Hyperplane Division in Fuzzy C-Means: Clustering Big Data
    Shen, Yinghua
    Pedrycz, Witold
    Chen, Yuan
    Wang, Xianmin
    Gacek, Adam
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2020, 28 (11) : 3032 - 3046
  • [40] Analysis of spectroscopic imaging data by fuzzy C-means clustering
    Mansfield, JR
    Sowa, MG
    Scarth, GB
    Somorjai, RL
    Mantsch, HH
    ANALYTICAL CHEMISTRY, 1997, 69 (16) : 3370 - 3374