Nonpeptide Ligands for Peptidergic G Protein-Coupled Receptors

被引:0
|
作者
Geary, Timothy G. [1 ]
机构
[1] McGill Univ, Inst Parasitol, Ste Anne De Bellevue, PQ H9X 3V9, Canada
关键词
TYPE-2; DIABETES-MELLITUS; DRUG DISCOVERY; OPIOID RECEPTORS; SUBSTANCE-P; CHOLECYSTOKININ ANTAGONISTS; SACCHAROMYCES-CEREVISIAE; NEUROKININ-1; RECEPTOR; SPECIES SELECTIVITY; PHYLUM NEMATODA; MOLECULAR-BASIS;
D O I
暂无
中图分类号
R-3 [医学研究方法]; R3 [基础医学];
学科分类号
1001 ;
摘要
Neuropeptides play essential roles in many physiological systems in vertebrates and invertebrates. Peptides per se are difficult to use as therapeutic agents, as they are generally very unstable in biological fluid environments and cross biological membranes poorly. Recognition that nonpeptide ligands for peptide receptors have clinical utility came from the discovery that opiates (such as morphine) act by binding to G protein-coupled receptors (GPCRs) for which the endogenous ligands are a family of neuropeptides (enkephalins and endorphins). Basic research has revealed a very large number of distinct neuropeptides that influence virtually every aspect of mammalian physiology and considerable effort has been expended in the pursuit of new drugs that act through peptidergic signaling systems. Although useful drugs have been found to affect various aspects of neuropeptide biology, most work has been devoted to the discovery of nonpeptide ligands that act as agonists or antagonists at peptidergic GPCRs. Similar opportunities are apparent for the discovery of nonpeptide ligands that act on invertebrate GPCRs. A consideration of the knowledge gained from the process as conducted for mammalian peptidergic systems can inform and illuminate promising strategies for the discovery of new drugs for the treatment and control of pests and parasites.
引用
收藏
页码:10 / 26
页数:17
相关论文
共 50 条
  • [31] G Protein-Coupled Receptors in Macrophages
    Lin, Hsi-Hsien
    Stacey, Martin
    MICROBIOLOGY SPECTRUM, 2016, 4 (04):
  • [32] Lysophospholipid G protein-coupled receptors
    Anliker, B
    Chun, J
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2004, 279 (20) : 20555 - 20558
  • [33] Trafficking of G protein-coupled receptors
    Drake, Matthew T.
    Shenoy, Sudha K.
    Lefkowitz, Robert J.
    CIRCULATION RESEARCH, 2006, 99 (06) : 570 - 582
  • [34] G Protein-Coupled Receptors in Cancer
    Bar-Shavit, Rachel
    Maoz, Myriam
    Kancharla, Arun
    Nag, Jeetendra Kumar
    Agranovich, Daniel
    Grisaru-Granovsky, Sorina
    Uziely, Beatrice
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2016, 17 (08)
  • [35] Oligomerisation of G protein-coupled receptors
    Milligan, G
    Rees, S
    ANNUAL REPORTS IN MEDICINAL CHEMISTRY, VOL 35, 2000, 35 : 271 - 279
  • [36] G protein-coupled receptors in rheumatology
    Neumann, Elena
    Khawaja, Kiran
    Mueller-Ladner, Ulf
    NATURE REVIEWS RHEUMATOLOGY, 2014, 10 (07) : 429 - 436
  • [37] Crystallization of G Protein-Coupled Receptors
    Salom, David
    Padayatti, Pius S.
    Palczewski, Krzysztof
    RECEPTOR-RECEPTOR INTERACTIONS, 2013, 117 : 451 - 468
  • [38] G Protein-Coupled Receptors in Osteoarthritis
    Wang, Fanhua
    Liu, Mingyao
    Wang, Ning
    Luo, Jian
    FRONTIERS IN ENDOCRINOLOGY, 2022, 12
  • [39] G Protein-Coupled Receptors (GPCRs)
    Shukla, Arun K.
    INTERNATIONAL JOURNAL OF BIOCHEMISTRY & CELL BIOLOGY, 2016, 77 : 183 - 183
  • [40] Class II G protein-coupled receptors and their ligands in neuronal function and protection
    Martin, B
    de Maturana, RL
    Brenneman, R
    Walent, T
    Mattson, MP
    Maudsley, S
    NEUROMOLECULAR MEDICINE, 2005, 7 (1-2) : 3 - 36