Parameter estimation by minimizing a probability generating function-based power divergence

被引:2
|
作者
Tay, S. Y. [1 ]
Ng, C. M. [1 ]
Ong, S. H. [1 ,2 ]
机构
[1] Univ Malaya, Inst Math Sci, Kuala Lumpur, Malaysia
[2] UCSI Univ, Dept Actuarial Sci & Appl Stat, Kuala Lumpur, Malaysia
关键词
Density power divergence; Hellinger distance; Jeffreys' divergence; M-estimation; Probability generating function; DISCRETE-DISTRIBUTIONS; DISTANCE; ROBUST;
D O I
10.1080/03610918.2018.1468462
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Generating function-based statistical inference is an attractive approach if the probability (density) function is complicated when compared with the generating function. Here, we propose a parameter estimation method that minimizes a probability generating function (pgf)-based power divergence with a tuning parameter to mitigate the impact of data contamination. The proposed estimator is linked to the M-estimators and hence possesses the properties of consistency and asymptotic normality. In terms of parameter biases and mean squared errors from simulations, the proposed estimation method performs better for smaller value of the tuning parameter as data contamination percentage increases.
引用
收藏
页码:2898 / 2912
页数:15
相关论文
共 50 条
  • [31] Parameter estimation method based on parameter function surface
    BAO WeiMin
    ZHANG XiaoQin
    ZHAO LiPing
    Science China(Technological Sciences), 2013, (06) : 1485 - 1498
  • [32] A new estimation method for radial basis function-based models
    Peng, H
    Ozaki, T
    Toyoda, Y
    NEW TECHNOLOGIES FOR COMPUTER CONTROL 2001, 2002, : 565 - 570
  • [33] Parameter estimation for a class of radial basis function-based nonlinear time-series models with moving average noises *
    Zhou, Yihong
    Wang, Yanjiao
    Ma, Fengying
    Ding, Feng
    Hayat, Tasawar
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2021, 358 (04): : 2576 - 2595
  • [34] A confidence function-based posterior probability design for phase II cancer trials
    Shan, Minghua
    PHARMACEUTICAL STATISTICS, 2021, 20 (03) : 485 - 498
  • [35] Optimal PV Parameter Estimation via Double Exponential Function-Based Dynamic Inertia Weight Particle Swarm Optimization
    Kiani, Arooj Tariq
    Nadeem, Muhammad Faisal
    Ahmed, Ali
    Khan, Irfan
    Elavarasan, Rajvikram Madurai
    Das, Narottam
    ENERGIES, 2020, 13 (15)
  • [36] Power function-based Gini indices: New sparsity measures using power function-based quasi-arithmetic means for bearing condition monitoring
    Chen, Bingyan
    Gu, Fengshou
    Zhang, Weihua
    Song, Dongli
    Cheng, Yao
    Zhou, Zewen
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2023, 22 (06): : 3677 - 3706
  • [37] Parameter estimation for a class of radial basis function-based nonlinear time-series models with moving average noises
    Zhou, Yihong
    Wang, Yanjiao
    Ma, Fengying
    Ding, Feng
    Hayat, Tasawar
    Journal of the Franklin Institute, 2021, 358 (04) : 2576 - 2595
  • [38] Function-based design of a spacecraft power system diagnostics testbed
    Hutcheson, Ryan S.
    Tumer, Irem Y.
    Proceedings of the ASME Design Engineering Division 2005, Pts A and B, 2005, : 837 - 844
  • [39] Tests of fit for discrete distributions based on the probability generating function
    Rueda, R
    O'Reilly, F
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1999, 28 (01) : 259 - 274
  • [40] A Power Thresholding Function-based Wavelet Image Denoising Method
    Yan, Zhidan
    Xu, Wenyi
    Yang, Chunmei
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2018, 62 (01)