An Online Implementation of Robust RGB-D SLAM

被引:0
|
作者
Athari, M. A. [1 ]
Taghirad, H. D. [1 ]
机构
[1] KN Toosi Univ Technol, Fac Elect Engn, Tehran 163151355, Iran
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an online robust RGB-D SLAM algorithm which uses an improved switchable constraints robust pose graph slam alongside with radial variance based hash function as the loop detector. The switchable constraints robust back-end is improved by initialization of its weights according to information matrix of the loops and is validated using real world datasets. The radial variance based hash function is combined with an online image to map comparison to improve accuracy of loop detection. The whole algorithm is implemented on K. N. Toosi University mobile robot with a Microsoft Kinect camera as the RGB-D sensor and the whole algorithm is validated using this robot, while the map of the environment is generated in an online fashion.
引用
收藏
页码:316 / 321
页数:6
相关论文
共 50 条
  • [31] Linear RGB-D SLAM for Atlanta World
    Joo, Kyungdon
    Oh, Tae-Hyun
    Rameau, Francois
    Bazin, Jean-Charles
    Kweon, In So
    2020 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2020, : 1077 - 1083
  • [32] Dense Visual SLAM for RGB-D Cameras
    Kerl, Christian
    Sturm, Juergen
    Cremers, Daniel
    2013 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2013, : 2100 - 2106
  • [33] Linear RGB-D SLAM for Planar Environments
    Kim, Pyojin
    Coltin, Brian
    Kim, H. Jin
    COMPUTER VISION - ECCV 2018, PT IV, 2018, 11208 : 350 - 366
  • [34] Some Improvements in the RGB-D SLAM System
    Hieu Pham Quang
    Ngoc Ly Quoc
    2015 IEEE RIVF INTERNATIONAL CONFERENCE ON COMPUTING & COMMUNICATION TECHNOLOGIES - RESEARCH, INNOVATION, AND VISION FOR THE FUTURE (RIVF), 2015, : 112 - 116
  • [35] RGB-D SLAM with Deep Depth Completion
    Serhatoglu, Ali Osman
    Guclu, Oguzhan
    Can, Ahmet Burak
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2022, PT II, 2023, 13589 : 59 - 67
  • [36] Robust RGB-D SLAM Using Point and Line Features for Low Textured Scene
    Zou, Yajing
    Eldemiry, Amr
    Li, Yaxin
    Chen, Wu
    SENSORS, 2020, 20 (17) : 1 - 20
  • [37] Robust RGB-D SLAM in Dynamic Environment Using Faster R-CNN
    Yang, Sifan
    Wang, Jinnan
    Wang, Guijin
    Hu, Xiaowei
    Zhou, Maomin
    Liao, Qingmin
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2398 - 2402
  • [38] A Robust Keyframe-Based Visual SLAM for RGB-D Cameras in Challenging Scenarios
    Lin, Xi
    Huang, Yewei
    Sun, Dingyi
    Lin, Tzu-Yuan
    Englot, Brendan
    Eustice, Ryan M.
    Ghaffari, Maani
    IEEE ACCESS, 2023, 11 : 97239 - 97249
  • [39] A Robust RGB-D SLAM System With Points and Lines for Low Texture Indoor Environments
    Fu, Qiang
    Yu, Hongshan
    Lai, Lihai
    Wang, Jingwen
    Peng, Xia
    Sun, Wei
    Sun, Mingui
    IEEE SENSORS JOURNAL, 2019, 19 (21) : 9908 - 9920
  • [40] 6D Visual SLAM for RGB-D Sensors
    Endres, Felix
    Hess, Juergen
    Engelhard, Nikolas
    Sturm, Juergen
    Burgard, Wolfram
    AT-AUTOMATISIERUNGSTECHNIK, 2012, 60 (05) : 270 - 278