Fuzzy risk assessment of mortality after coronary surgery using combination of adaptive neuro-fuzzy inference system and K-means clustering

被引:11
|
作者
Nouei, Mahyar Taghizadeh [1 ]
Kamyad, Ali Vahidian [1 ]
Sarzaeem, MahmoodReza [2 ]
Ghazalbash, Somayeh [2 ]
机构
[1] Ferdowsi Univ Mashhad, Sch Math Sci, Dept Appl Math, Int Campus, Mashhad, Iran
[2] Univ Tehran Med Sci, Shariati Hosp, Cardiac Surg & Transplantat Res Ctr CTRC, Tehran, Iran
关键词
fuzzy expert system; risk assessment; coronary artery disease; neuro-fuzzy inference system; LINEAR DISCRIMINANT-ANALYSIS; EXPERT-SYSTEM; DIAGNOSIS; ANFIS; PREDICTION; MODEL; NETWORKS;
D O I
10.1111/exsy.12145
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, a fuzzy expert system based on adaptive neuro-fuzzy inference system (ANFIS) is introduced to assess the mortality after coronary bypass surgery. In preprocessing phase, the attributes were reduced using a univariant analysis in order to make the classifier system more effective. Prognostic factors with a p-value of less than 0.05 in chi-square or t-student analysis were given to inputs ANFIS classifier. The correct diagnosis performance of the proposed fuzzy system was calculated in 824 samples. To demonstrate the usefulness of the proposed system, the study compared the performance of fuzzy system based on ANFIS method through the binary logistic regression with the same attributes. The experimental results showed that the fuzzy model (accuracy: 96.4%; sensitivity: 66.6%; specificity: 97.2%; and area under receiver operating characteristic curve: 0.82) consistently outperformed the logistic regression (accuracy: 89.4%; sensitivity: 47.6%; specificity: 89.4%; and area under receiver operating characteristic curve: 0.62). The obtained classification accuracy of fuzzy expert system was very promising with regard to the traditional statistical methods to predict mortality after coronary bypass surgery such as binary logistic regression model.
引用
收藏
页码:230 / 238
页数:9
相关论文
共 50 条
  • [41] Adaptive Neuro-Fuzzy Inference System for drought forecasting
    Ulker Guner Bacanli
    Mahmut Firat
    Fatih Dikbas
    Stochastic Environmental Research and Risk Assessment, 2009, 23 : 1143 - 1154
  • [42] Adaptive neuro-fuzzy inference system for modelling and control
    Amaral, TGB
    Crisóstomo, MM
    Pires, VF
    2002 FIRST INTERNATIONAL IEEE SYMPOSIUM INTELLIGENT SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 67 - 72
  • [43] Edge Detection by Adaptive Neuro-Fuzzy Inference System
    Zhang, Lei
    Xiao, Mei
    Ma, Jian
    Song, Hongxun
    PROCEEDINGS OF THE 2009 2ND INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING, VOLS 1-9, 2009, : 1774 - 1777
  • [44] Adaptive Neuro-Fuzzy Inference System for Classification of Texts
    Kamil, Aida-zade
    Rustamov, Samir
    Clements, Mark A.
    Mustafayev, Elshan
    RECENT DEVELOPMENTS AND THE NEW DIRECTION IN SOFT-COMPUTING FOUNDATIONS AND APPLICATIONS, 2018, 361 : 63 - 70
  • [45] Neuro-Fuzzy Evaluation of the Software Reliability Models by Adaptive Neuro Fuzzy Inference System
    Milovancevic, Milos
    Dimov, Aleksandar
    Spasov, Kamen Boyanov
    Vracar, Ljubomir
    Planic, Miroslav
    JOURNAL OF ELECTRONIC TESTING-THEORY AND APPLICATIONS, 2021, 37 (04): : 439 - 452
  • [46] Hysteresis Modeling with Adaptive Neuro-Fuzzy Inference System
    Mordjaoui, M.
    Chabane, M.
    Boudjema, B.
    Daira, R.
    FERROELECTRICS, 2008, 372 : 54 - 65
  • [47] Prediction of settled water turbidity and optimal coagulant dosage in drinking water treatment plant using a hybrid model of k-means clustering and adaptive neuro-fuzzy inference system
    Kim C.M.
    Parnichkun M.
    Applied Water Science, 2017, 7 (7) : 3885 - 3902
  • [48] Tweet recommender model using adaptive neuro-fuzzy inference system
    Jain, Deepak Kumar
    Kumar, Akshi
    Sharma, Vibhuti
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 112 : 996 - 1009
  • [49] Battery Temperature Prediction Using an Adaptive Neuro-Fuzzy Inference System
    Zhang, Hanwen
    Fotouhi, Abbas
    Auger, Daniel J.
    Lowe, Matt
    BATTERIES-BASEL, 2024, 10 (03):
  • [50] Runoff estimation using modified adaptive neuro-fuzzy inference system
    Nath, Amitabha
    Mthethwa, Fisokuhle
    Saha, Goutam
    ENVIRONMENTAL ENGINEERING RESEARCH, 2020, 25 (04) : 545 - 553