Tunable Electronic Properties of Arsenene and Transition-Metal Dichalcogenide Heterostructures: A First-Principles Calculation

被引:29
|
作者
Dong, M. M. [1 ]
He, C. [1 ]
Zhang, W. X. [2 ]
机构
[1] Xi An Jiao Tong Univ, Sch Mat Sci & Engn, State Key Lab Mech Behav Mat, Xian 710049, Shaanxi, Peoples R China
[2] Changan Univ, Sch Mat Sci & Engn, Xian 710064, Shaanxi, Peoples R China
来源
JOURNAL OF PHYSICAL CHEMISTRY C | 2017年 / 121卷 / 40期
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
DER-WAALS HETEROSTRUCTURES; MAGNETIC-PROPERTIES; LAYER MOS2; FIELD; NANOSHEETS;
D O I
10.1021/acs.jpcc.7b05650
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The structural and electronic properties of arsenene and monolayer transition-metal dichalcogenides (beta-As/MX2) heterostructures have been systematically investigated by density functional theory. It is found that all beta-As/MX2 heterostructures with little lattice mismatch possess considerable band gaps. Their electronic properties can be effectively tuned via (biaxial or uniaxial) strain and electric field, but the variation trends are different. The band gaps of the beta-As/MX2 heterostructures decrease linearly as the strain arises, while there is a Stark effect of the band gap under suitable electric field due to the spontaneous electric polarization in the heterostructures. Meanwhile, a series change of the semiconductor types of the beta-As/MX2 heterostructures could also be obtained by the strain and electric field. These diverse electronic properties may provide a potential application in nanodevices based on arsenene and transition-metal dichalcogenides.
引用
收藏
页码:22040 / 22048
页数:9
相关论文
共 50 条
  • [1] Tunable Electronic Properties of Two-Dimensional Transition Metal Dichalcogenide Alloys: A First-Principles Prediction
    Xi, Jinyang
    Zhao, Tianqi
    Wang, Dong
    Shuai, Zhigang
    [J]. JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2014, 5 (02): : 285 - 291
  • [2] Electronic structures and optical properties of realistic transition metal dichalcogenide heterostructures from first principles
    Komsa, Hannu-Pekka
    Krasheninnikov, Arkady V.
    [J]. PHYSICAL REVIEW B, 2013, 88 (08)
  • [3] First-principles calculation of transition-metal Seebeck coefficients
    Kou, S.
    Akai, H.
    [J]. SOLID STATE COMMUNICATIONS, 2018, 276 : 1 - 4
  • [4] First-principles calculation of transition-metal impurities in LaFeAsO
    Nakamura, Kazuma
    Arita, Ryotaro
    Ikeda, Hiroaki
    [J]. PHYSICAL REVIEW B, 2011, 83 (14):
  • [5] Transition metal doped arsenene: A first-principles study
    Sun, Minglei
    Wang, Sake
    Du, Yanhui
    Yu, Jin
    Tang, Wencheng
    [J]. APPLIED SURFACE SCIENCE, 2016, 389 : 594 - 600
  • [6] A first-principles study of transition metal doped arsenene
    Liu, Mingyang
    Chen, Qingyuan
    Huang, Yang
    Cao, Chao
    He, Yao
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2016, 100 : 131 - 141
  • [7] Influence of the vacancy-defect and transition-metal doping in arsenene: A first-principles study
    Liu, Yaxin
    Zhou, Qingxiao
    Ju, Weiwei
    Li, Jiahui
    Liu, Yanling
    [J]. SUPERLATTICES AND MICROSTRUCTURES, 2019, 132
  • [8] Electronic and magnetic properties of 3d transition-metal atom adsorbed vacancy-defected arsenene: A first-principles study
    Zhou, Qingxiao
    Ju, Weiwei
    Yong, Yongliang
    Li, Xiaohong
    [J]. JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2019, 491
  • [9] First-principles simulation on thermoelectric properties of transition metal dichalcogenide monolayers
    Nakamura, Koichi
    [J]. JAPANESE JOURNAL OF APPLIED PHYSICS, 2018, 57 (06)
  • [10] Tunable thermal expansion coefficient of transition-metal dichalcogenide lateral heterostructures
    Zhang, Run-Sen
    Cao, Hai-Yan
    Jiang, Jin-Wu
    [J]. NANOTECHNOLOGY, 2020, 31 (40)