Shack-Hartmann Phasing of Segmented Telescopes: Systematic Effects from Lenslet Arrays

被引:1
|
作者
Troy, Mitchell [1 ]
Chanan, Gary [2 ]
Roberts, Jennifer [1 ]
机构
[1] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[2] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
来源
基金
美国国家航空航天局; 加拿大创新基金会; 加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
Telescopes; Segmented Mirrors; Optical Alignment; Phasing; MIRROR SEGMENTS; KECK TELESCOPES;
D O I
10.1117/12.857669
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
The segments in the Keck telescopes are routinely phased using a Shack-Hartmann wavefront sensor with subapertures that span adjacent segments. However, one potential limitation to the absolute accuracy of this technique is that it relies on a lenslet array (or a single lens plus a prism array) to form the subimages. These optics have the potential to introduce wavefront errors and stray reflections at the subaperture level that will bias the phasing measurement. We present laboratory data to quantify this effect, using measured errors from Keck and two other lenslet arrays. In addition, as part of the design of the Thirty Meter Telescope Alignment and Phasing System we present a preliminary investigation of a lenslet-free approach that relies on Fresnel diffraction to form the subimages at the CCD. Such a technique has several advantages, including the elimination of lenslet aberrations.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] A systematic performance evaluation of indigenously developed Shack-Hartmann wavefront sensor
    Porwal, Vikash
    Dixit, Awakash
    Mamgain, Aditya Kumar
    Mishra, Sanjay Kumar
    Gupta, Arun Kumar
    INDIAN JOURNAL OF PURE & APPLIED PHYSICS, 2016, 54 (07) : 419 - 426
  • [22] Multi-focal Shack-Hartmann wavefront sensing with self-interference Chinese Taiji-lenslet array
    Li, You
    Zhang, Junyong
    Yang, Yaling
    Zhang, Yanli
    OPTICS AND LASERS IN ENGINEERING, 2021, 144
  • [23] Performance comparison of the Shack-Hartmann and pyramid wavefront sensors with a laser guide star for 40 m telescopes
    Oyarzun, F.
    Heritier, C.
    Chambouleyron, V.
    Fusco, T.
    Rouquette, P.
    Neichel, B.
    ASTRONOMY & ASTROPHYSICS, 2024, 691
  • [24] Measurements of image quality and surface shape of microlens arrays for Shack-Hartmann wavefront sensors
    Terao, Koki
    Akiyama, Masayuki
    Oya, Shin
    ADAPTIVE OPTICS SYSTEMS VII, 2020, 11448
  • [25] High-precision Shack-Hartmann wavefront sensing with a multi-focal diffraction Taiji-lenslet array
    Yang, Yaling
    Zhang, Yanli
    Zhang, Junyong
    Li, You
    Liu, Dean
    LASER PHYSICS, 2021, 31 (12)
  • [26] Cn2 profile measurement from Shack-Hartmann data
    Vedrenne, Nicolas
    Michau, Vincent
    Robert, Celia
    Conan, Jean-Marc
    OPTICS LETTERS, 2007, 32 (18) : 2659 - 2661
  • [27] Design and fabrication of long-focal-length microlens arrays for Shack-Hartmann wavefront sensors
    Lin, V.
    Wei, H. -C.
    Hsieh, H. -T.
    Hsieh, J. -L.
    Su, G. -D. J.
    MICRO & NANO LETTERS, 2011, 6 (07): : 523 - 526
  • [28] Effects of the LGS geometry on the Shack-Hartmann wavefront sensor and the Pyramid wavefront sensor
    Oyarzun, F.
    Heritier, C. T.
    Chambouleyron, V
    Fusco, T.
    Rouquette, P.
    Neichel, B.
    ADAPTIVE OPTICS SYSTEMS IX, 2024, 13097
  • [29] Extracting wavefront error from Shack-Hartmann images using spatial demodulation
    Sarver, Edwin J.
    Schwiegerling, Jim
    Applegate, Raymond A.
    JOURNAL OF REFRACTIVE SURGERY, 2006, 22 (09) : 949 - 953
  • [30] Estimation of atmospheric turbulence parameters from Shack-Hartmann wavefront sensor measurements
    Andrade, Paulo P.
    Garcia, Paulo J. V.
    Correia, Carlos M.
    Kolb, Johann
    Carvalho, Maria Ines
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2019, 483 (01) : 1192 - 1201