Effects of different working fluid use on the energy and exergy performance for evacuated tube solar collector with thermosyphon heat pipe

被引:86
|
作者
Ersoz, Mustafa Ali [1 ]
机构
[1] Usak Univ, Tech Sci Vocat High Sch, Dept Elect & Energy, TR-64200 Usak, Turkey
关键词
Evacuated tube; Thermosyphon heat pipe; Energy; Exergy; Performance; Working fluid; THERMAL PERFORMANCE; WATER-HEATERS; MODEL; TEMPERATURE; SYSTEM;
D O I
10.1016/j.renene.2016.04.058
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this study, the effects of six different working fluids, hexane, petroleum ether, chloroform, acetone, methanol and ethanol on the energy and exergy performance are investigated in evacuated tube solar collectors with thermosyphon heat pipe under three different air velocities as 2, 3 and 4 ms(-1). The six evacuated tube solar collectors with thermosyphon heat pipe with the same dimensions and properties are designated for the air heating and tested under the outdoor climatic conditions of Usak, Turkey. The lowest energy and exergy efficiencies occur in the THPETC-Hexane under 2, 3 and 4 ms(-1), the highest energy efficiency occurs in the THPETC-Acetone for air velocity of 2 and 3 ms(-1) and in the THPETC-Chloroform for air velocity of 4 ms(-1). The highest exergy efficiency occurs in the THPETC-Acetone for air velocity of 2 ms(-1) and in the THPETC-Chloroform for air velocity of 3 and 4 ms(-1). (C) 2016 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页码:244 / 256
页数:13
相关论文
共 50 条
  • [21] Experimental comparison of different heat transfer fluid for thermal performance of a solar cooker based on evacuated tube collector
    Singh, Harvinder
    Gagandeep
    Saini, Karamjeet
    Yadav, Avadhesh
    ENVIRONMENT DEVELOPMENT AND SUSTAINABILITY, 2015, 17 (03) : 497 - 511
  • [22] Performance Evaluation of Dual Purposes Solar Heating System Using Heat Pipe Evacuated Tube Solar Collector
    El-Ghetany, H. H.
    Hassan, S. A.
    EGYPTIAN JOURNAL OF CHEMISTRY, 2021, 64 (07): : 3297 - 3303
  • [23] Experimental evaluation of the efficiency of a solar tube collector evacuated with and without heat pipe
    Eufracio Arias, Wilder Efrain
    Abregu Rodriguez, Nathaly Ibeth
    Rodriguez Espinoza, Dayana
    FUENTES EL REVENTON ENERGETICO, 2019, 17 (01): : 7 - 17
  • [24] Experimental studies of thermal performance of an evacuated tube heat pipe solar collector in Polish climatic conditions
    Siuta-Olcha, Alicja
    Cholewa, Tomasz
    Dopieralska-Howoruszko, Kinga
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2021, 28 (12) : 14319 - 14328
  • [25] Experimental study on heat pipe evacuated tube solar collector for residential use with various condenser configurations
    Nithyanandhan, K.
    Suganeswaran, K.
    Murugan, P. C.
    ENERGY CONVERSION AND MANAGEMENT, 2024, 312
  • [26] Thermal performance of a heat-pipe evacuated-tube solar collector at high inlet temperatures
    Elsheniti, Mahmoud B.
    Kotb, Amr
    Elsamni, Osama
    APPLIED THERMAL ENGINEERING, 2019, 154 : 315 - 325
  • [27] Experimental studies of thermal performance of an evacuated tube heat pipe solar collector in Polish climatic conditions
    Alicja Siuta-Olcha
    Tomasz Cholewa
    Kinga Dopieralska-Howoruszko
    Environmental Science and Pollution Research, 2021, 28 : 14319 - 14328
  • [28] Thermal performance of heat pipe evacuated tube solar collector integrated with different types of phase change materials at various location
    Alshukri, Mohammed J.
    Eidan, Adel A.
    Najim, Saleh Ismail
    RENEWABLE ENERGY, 2021, 171 : 635 - 646
  • [29] Energy, Exergy and Economic (3E) analysis of evacuated tube heat pipe solar collector to promote storage energy under North African climate
    Bouadila, Salwa
    Rehman, Tauseef-ur
    Baig, Maughal Ahmed Ali
    Skouri, Safa
    Baddadi, Sara
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2023, 55
  • [30] Thermosyphon heat-pipe evacuated tube solar water heaters for northern maritime climates
    Redpath, David A. G.
    SOLAR ENERGY, 2012, 86 (02) : 705 - 715