Structures and energetics of hydrogen-terminated silicon nanowire surfaces

被引:100
|
作者
Zhang, RQ [1 ]
Lifshitz, Y
Ma, DDD
Zhao, YL
Frauenheim, T
Lee, ST
Tong, SY
机构
[1] Technion Israel Inst Technol, Dept Mat Sci, IL-3200 Haifa, Israel
[2] City Univ Hong Kong, Dept Phys & Mat Sci, COSDAF, Hong Kong, Hong Kong, Peoples R China
来源
JOURNAL OF CHEMICAL PHYSICS | 2005年 / 123卷 / 14期
关键词
D O I
10.1063/1.2047555
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The analysis and density-functional tight-binding simulations of possible configurations of silicon nanowires (SiNWs) enclosed by low-index surfaces reveal a number of remarkable features. For wires along < 100 >, < 110 >, and < 111 > directions, many low-index facet configurations and cross sections are possible, making their controlled growth difficult. The < 112 > wires are the most attractive for research and applications because they have only one configuration of enclosing low-index facets with a rectangular cross section, enclosed with the most stable (111) facet and the (110) facet next to it. In general, the stability of the SiNWs is determined by a balance between (1) minimization of the surface energy gamma(111)<gamma(110)<gamma(001), and (2) minimization of the surface-to-volume ratio [svr; svr(hexagonal)>svr(rectangular)>svr(triangular)]. The energy band gaps follow the order of < 100 > wires>< 112 > wires>< 111 > wires>< 110 > wires. The results are compared with our recent scanning tunneling microscopy and transmission electron microscopy data. (c) 2005 American Institute of Physics.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] MESFETs and MOSFETs on hydrogen-terminated diamond surfaces
    Tsugawa, K
    Hokazono, A
    Noda, H
    Kitatani, K
    Morita, K
    Kawarada, H
    SILICON CARBIDE, III-NITRIDES AND RELATED MATERIALS, PTS 1 AND 2, 1998, 264-2 : 977 - 980
  • [32] Multifunctional Silicon Surfaces: Reaction of Dichlorocarbene Generated from Seyferth Reagent with Hydrogen-Terminated Silicon (111) Surfaces
    Liu, Wenjun
    Sharp, Ian D.
    Tilley, T. Don
    LANGMUIR, 2014, 30 (01) : 172 - 178
  • [33] Local modification of hydrogen-terminated silicon surfaces by clean and hydrogen-covered STM tips
    Sakurai, M
    Thirstrup, C
    Nakayama, T
    Aono, M
    SURFACE SCIENCE, 1997, 386 (1-3) : 154 - 160
  • [34] Silicon epitaxy on hydrogen-terminated Si(001) surfaces using thermal and energetic beams
    Murty, MVR
    Atwater, HA
    SURFACE SCIENCE, 1997, 374 (1-3) : 283 - 290
  • [35] Silicon nanowhiskers grown on a hydrogen-terminated silicon {111} surface
    Ozaki, N
    Ohno, Y
    Takeda, S
    APPLIED PHYSICS LETTERS, 1998, 73 (25) : 3700 - 3702
  • [36] ULTRA-THIN GATE OXIDE-GROWTH ON HYDROGEN-TERMINATED SILICON SURFACES
    HIROSE, M
    HIROSHIMA, M
    YASAKA, T
    TAKAKURA, M
    MIYAZAKI, S
    MICROELECTRONIC ENGINEERING, 1993, 22 (1-4) : 3 - 10
  • [37] Atomic-layer selective deposition of silicon nitride on hydrogen-terminated Si surfaces
    Yokoyama, S
    Ikeda, N
    Kajikawa, K
    Nakashima, Y
    APPLIED SURFACE SCIENCE, 1998, 130 : 352 - 356
  • [38] Electroless Patterned Assembly of Metal Nanoparticles on Hydrogen-Terminated Silicon Surfaces for Applications in Photoelectrocatalysis
    Fabre, Bruno
    Hennous, Leila
    Ababou-Girard, Soraya
    Meriadec, Cristelle
    ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (02) : 338 - 343
  • [39] Silicon-kicking-out mechanism in initial oxide formation on hydrogen-terminated silicon (100) surfaces
    NTT Basic Research Lab, Kanagawa, Japan
    Appl Surf Sci, (176-181):
  • [40] Electronic images of hydrogen-terminated diamond(111) surfaces
    Zheng, XM
    SURFACE SCIENCE, 1996, 364 (02) : 141 - 150