Singular limits in the Cauchy problem for the damped extensible beam equation

被引:4
|
作者
Racke, Reinhard [1 ]
Yoshikawa, Shuji [2 ]
机构
[1] Univ Konstanz, Dept Math & Stat, D-78457 Constance, Germany
[2] Ehime Univ, Grad Sch Sci & Engn, Dept Engn Prod & Environm, Matsuyama, Ehime 7908577, Japan
关键词
Decay estimate; Extensible beam; Cauchy problem; Singular limit; Ball's model; Kelvin-Voigt damping; KIRCHHOFF TYPE; PERTURBATION;
D O I
10.1016/j.jde.2015.02.045
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study the Cauchy problem of the Ball model for an extensible beam: rho partial derivative(2)(t)u + delta partial derivative(t)u + kappa partial derivative(4)(x)u + eta partial derivative(t)partial derivative(4)(x)u = (alpha + beta integral(R) vertical bar partial derivative(x)u vertical bar(2)dx + gamma eta integral partial derivative(t)partial derivative(x)u partial derivative(x)udx) partial derivative(2)(x)u. The aim of this paper is to investigate singular limits as rho -> 0 for this problem. In the authors' previous paper [8] decay estimates of solutions u(rho) to the equation in the case rho > 0 were shown. With the help of the decay estimates we describe the singular limit in the sense of the following uniform (in time) estimate: parallel to u(rho) - u(0)parallel to(L infinity ([0,infinity);H2(R))) <= C rho. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:1297 / 1322
页数:26
相关论文
共 50 条