Consistent Estimator of the Shape Parameter of Three-Dimensional Weibull Distribution

被引:6
|
作者
Bartkute-Norkuniene, Vaida [1 ]
Sakalauskas, Leonidas [1 ]
机构
[1] Vilnius Univ, Inst Math & Informat, LT-08663 Vilnius, Lithuania
关键词
Consistency; Order statistics; Unbiasedness; Weibull distribution; MAXIMUM-LIKELIHOOD-ESTIMATION;
D O I
10.1080/03610926.2011.562785
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article, a new estimator for the shape parameter of the three-dimensional Weibull distribution is proposed using order statistics taken from a large scale data set. It is proved that this estimator has good properties, such as asymptotic unbiasedness and consistency. Computer modeling results corroborate practical applicability of the estimator proposed. Recommendations for implementating the estimator are discussed, as well. We investigate the properties of this estimator in large-scale data sets.
引用
收藏
页码:2985 / 2996
页数:12
相关论文
共 50 条
  • [21] Statistical Inference on the Shape Parameter of Inverse Generalized Weibull Distribution
    Zhuang, Yan
    Bapat, Sudeep R.
    Wang, Wenjie
    MATHEMATICS, 2024, 12 (24)
  • [22] Bias correction for the least squares estimator of Weibull shape parameter with complete and censored data
    Zhang, L. F.
    Xie, M.
    Tang, L. C.
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2006, 91 (08) : 930 - 939
  • [23] A consistent parameter estimation in the three-parameter lognormal distribution
    Nagatsuka, Hideki
    Balakrishnan, N.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (07) : 2071 - 2086
  • [24] Three-dimensional intrinsic shape
    Ha, VHS
    Moura, JMF
    ICIP: 2004 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1- 5, 2004, : 2099 - 2102
  • [25] On the Three-Dimensional Shape of a Crystal
    Indrei, Emanuel
    Karakhanyan, Aram
    MATHEMATICS, 2025, 13 (04)
  • [26] ON TESTIMATING THE WEIBULL SHAPE PARAMETER
    CHANDRA, NK
    CHAUDHURI, A
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1990, 19 (02) : 637 - 648
  • [27] Multi-parameter constrained three-dimensional shape inversion of magnetic bodies
    Li J.
    Fan H.
    Liu L.
    Zhang Y.
    Li Z.
    Wu B.
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2021, 56 (02): : 407 - 418
  • [28] Shape Parameter Estimator of the Generalized Gaussian Distribution Based on the MoLC
    Gao, Gui
    Li, Gaosheng
    Li, Yipeng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (03) : 350 - 354
  • [29] Approximated fast estimator for the shape parameter of generalized Gaussian distribution
    Krupinski, R
    Purczynski, J
    SIGNAL PROCESSING, 2006, 86 (02) : 205 - 211
  • [30] Efficiency of the Approximated Shape Parameter Estimator in the Generalized Gaussian Distribution
    Gonzalez-Farias, Graciela
    Dominguez Molina, J. Armando
    Rodriguez-Dagnino, Ramon M.
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2009, 58 (08) : 4214 - 4223