Focus-pixel estimation and optimization for multi-focus image fusion

被引:2
|
作者
He, Kangjian [1 ]
Gong, Jian [1 ]
Xu, Dan [1 ]
机构
[1] Yunnan Univ, Sch Informat Sci & Engn, Kunming 650091, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-focus image fusion; Focus pixel estimation; Optimization; Focus-measure; WAVELET; INFORMATION; PERFORMANCE; DECOMPOSITION; TRANSFORM; FREQUENCY;
D O I
10.1007/s11042-022-12031-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To integrate the effective information and improve the quality of multi-source images, many spatial or transform domain-based image fusion methods have been proposed in the field of information fusion. The key purpose of multi-focus image fusion is to integrate the focused pixels and remove redundant information of each source image. Theoretically, if the focused pixels and complementary information of different images are detected completely, the fusion image with best quality can be obtained. For this goal, we propose a focus-pixel estimation and optimization based multi-focus image fusion framework in this paper. Because the focused pixels of an image are in the same depth of field (DOF), we propose a multi-scale focus-measure algorithm for the focused pixels matting to integrate the focused region firstly. Then, the boundaries of focused and defocused regions are obtained accurately by the proposed optimizing strategy. And the boundaries are also fused to reduce the influence of insufficient boundary precision. The experimental results demonstrate that the proposed method outperforms some previous typical methods in both objective evaluations and visual perception.
引用
收藏
页码:7711 / 7731
页数:21
相关论文
共 50 条
  • [31] Multi-focus image fusion using PCNN
    Wang, Zhaobin
    Ma, Yide
    Gu, Jason
    PATTERN RECOGNITION, 2010, 43 (06) : 2003 - 2016
  • [32] A Novel Framework for Multi-focus Image Fusion
    Bhatnagar, Gaurav
    Wu, Q. M. Jonathan
    2013 FOURTH NATIONAL CONFERENCE ON COMPUTER VISION, PATTERN RECOGNITION, IMAGE PROCESSING AND GRAPHICS (NCVPRIPG), 2013,
  • [33] Multi-focus image fusion in wavelet domain
    Wang, Wei-Wei
    Shui, Peng-Lang
    Song, Guo-Xiang
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2004, 26 (05):
  • [34] Compressive Sensing Multi-focus Image Fusion
    Cheng, Fang
    Yang, Bin
    Huang, Zhiwei
    PATTERN RECOGNITION (CCPR 2014), PT II, 2014, 484 : 107 - 116
  • [35] Multi-Focus Image Fusion of Digital Images
    Malviya, Anjali
    Bhirud, S. G.
    2009 INTERNATIONAL CONFERENCE ON ADVANCES IN RECENT TECHNOLOGIES IN COMMUNICATION AND COMPUTING (ARTCOM 2009), 2009, : 887 - +
  • [36] Multi-focus image fusion techniques: a survey
    Shiveta Bhat
    Deepika Koundal
    Artificial Intelligence Review, 2021, 54 : 5735 - 5787
  • [37] A CRYSTALVIEW ON MULTI-FOCUS IMAGE FUSION METHODS
    Prasad, K. H. K.
    Babu, S. B. G. Tilak
    Krishna, R. V. V.
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTING, COMMUNICATION, AND INTELLIGENT SYSTEMS (ICCCIS), 2021, : 669 - 674
  • [38] Multi-focus Image Fusion Using Image Morphology
    Disha, Kakaiya
    Kandoriya, Karshan
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2016, 16 (05): : 118 - 122
  • [39] Ensemble of CNN for multi-focus image fusion
    Amin-Naji, Mostafa
    Aghagolzadeh, Ali
    Ezoji, Mehdi
    INFORMATION FUSION, 2019, 51 : 201 - 214
  • [40] A Novel Fusion Algorithm for Multi-focus Image
    Wang Hongmei
    Nie Cong
    Li Yanjun
    Zhang Ke
    Chen Lihua
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL IV, 2010, : 396 - 399