Inference for domains under imputation for missing survey data

被引:5
|
作者
Haziza, D [1 ]
Rao, JNK
机构
[1] STAT Canada, Business Survey Method Div, Ottawa, ON K1A 0T6, Canada
[2] Carleton Univ, Sch Math & Stat, Ottawa, ON K1S 5B6, Canada
来源
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE | 2005年 / 33卷 / 02期
关键词
bias-adjusted estimator; design-based approach; domain totals and means; model-assisted approach; regression imputation; uniform response;
D O I
10.1002/cjs.5550330201
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The authors study the estimation of domain totals and means under survey-weighted regression imputation for missing items. They use two different approaches to inference: (i) design-based with uniform response within classes; (ii) model-assisted with ignorable response and an imputation model. They show that the imputed domain estimators are biased under (i) but approximately unbiased under (ii). They obtain a bias-adjusted estimator that is approximately unbiased under (i) or (ii). They also derive linearization variance estimators. They report the results of a simulation study on the bias ratio and efficiency of alternative estimators, including a complete case estimator that requires the knowledge of response indicators.
引用
收藏
页码:149 / 161
页数:13
相关论文
共 50 条
  • [31] Imputation of missing data in surveys
    Rässler, S
    JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2000, 220 (01): : 64 - 94
  • [32] Multiple imputation of missing data
    Lydersen, Stian
    TIDSSKRIFT FOR DEN NORSKE LAEGEFORENING, 2022, 142 (02) : 151 - 151
  • [33] Missing Data Imputation of Solar Radiation Data under Different Atmospheric Conditions
    Crespo Turrado, Concepcion
    Meizoso Lopez, Maria del Carmen
    Sanchez Lasheras, Fernando
    Rodriguez Gomez, Benigno Antonio
    Calvo Rolle, Jose Luis
    de Cos Juez, Francisco Javier
    SENSORS, 2014, 14 (11) : 20382 - 20399
  • [34] On inference of control-based imputation for analysis of repeated binary outcomes with missing data
    Gao, Fei
    Liu, Guanghan
    Zeng, Donglin
    Diao, Guoqing
    Heyse, Joseph F.
    Ibrahim, Joseph G.
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2017, 27 (03) : 358 - 372
  • [35] Missing data imputation and haplotype phase inference for genome-wide association studies
    Browning, Sharon R.
    HUMAN GENETICS, 2008, 124 (05) : 439 - 450
  • [36] Missing data imputation and haplotype phase inference for genome-wide association studies
    Sharon R. Browning
    Human Genetics, 2008, 124 : 439 - 450
  • [37] Semi-supervised Inference for Block-wise Missing Data without Imputation
    Song, Shanshan
    Lin, Yuanyuan
    Zhou, Yong
    JOURNAL OF MACHINE LEARNING RESEARCH, 2024, 25 : 1 - 36
  • [38] Empirical likelihood confidence intervals under imputation for missing survey data from stratified simple random sampling
    Cai, Song
    Qin, Yongsong
    Rao, J. N. K.
    Winiszewska, Malgorzata
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2019, 47 (02): : 281 - 301
  • [39] IDENTIFYING KEY MISSING DATA FOR INFERENCE UNDER UNCERTAINTY
    WANG, JC
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 1994, 10 (04) : 287 - 309
  • [40] Identifying key missing data for inference under uncertainty
    Wang, Jin-Chang, 1600, Publ by Elsevier Science Publ Co Inc, New York, NY, United States (10):