Primitive prime divisors in the critical orbits of one-parameter families of rational polynomials

被引:3
|
作者
Ren, Rufei [1 ]
机构
[1] Fudan Univ, Dept Math, 220 Mandan Rd, Shanghai 200433, Peoples R China
关键词
D O I
10.1017/S0305004121000025
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a polynomial f (x) epsilon Q[x] and rational numbers c, u, we put f(c)(x) := f (x)+ c, and consider the Zsigmondy set Z(f(c), u) associated to the sequence {f(n) (c) (u) - u}(n >= 1), see Definition 1.1, where f(c)(n) is the n-st iteration of f(c). In this paper, we prove that if u is a rational critical point of f, then there exists an M-f > 0 such that M-f >= max(c is an element of Q) {#Z(f(c), u)}.
引用
收藏
页码:569 / 584
页数:16
相关论文
共 50 条
  • [21] ONE-PARAMETER FAMILIES OF CAUSTICS BY REFLECTION IN THE PLANE
    BRUCE, JW
    GIBLIN, PJ
    QUARTERLY JOURNAL OF MATHEMATICS, 1984, 35 (139): : 243 - 251
  • [22] On confidence bounds for one-parameter exponential families
    Alizadeh, M.
    Nadarajah, S.
    Doostparast, M.
    Parchami, A.
    Mashinchi, M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (02) : 1569 - 1582
  • [23] Renormalization of one-parameter families of piecewise isometries
    Lowensteina, J. H.
    Vivaldi, F.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2016, 31 (04): : 393 - 465
  • [24] Persistence of the Feigenbaum Attractor in One-Parameter Families
    Eleonora Catsigeras
    Heber Enrich
    Communications in Mathematical Physics, 1999, 207 : 621 - 640
  • [25] STATISTICAL INFERENCES FOR 2 ONE-PARAMETER FAMILIES
    GUENTHER, WC
    AMERICAN STATISTICIAN, 1987, 41 (01): : 50 - 52
  • [26] One-parameter families and nets of plane curves
    Wilczynski, EJ
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1911, 12 : 473 - 510
  • [27] ONE-PARAMETER FAMILIES OF DISTORTION RISK MEASURES
    Tsukahara, Hideatsu
    MATHEMATICAL FINANCE, 2009, 19 (04) : 691 - 705
  • [28] Persistence of the Feigenbaum attractor in one-parameter families
    Catsigeras, E
    Enrich, H
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1999, 207 (03) : 621 - 640
  • [29] RESURGENCE AND BIFURCATIONS IN SOME ONE-PARAMETER FAMILIES
    FAUVET, F
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1992, 315 (12): : 1283 - 1286
  • [30] MANDELBROT AND JULIA SETS OF ONE-PARAMETER RATIONAL FUNCTION FAMILIES ASSOCIATED WITH NEWTON'S METHOD
    Liu, Xiang-Dong
    Li, Zhi-Jie
    Ang, Xue-Ye
    Zhang, Jin-Hai
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2010, 18 (02) : 255 - 263