Quantifying Uncertainty in Mechanistic Models of Infectious Disease

被引:8
|
作者
McGowan, Lucy D'Agostino [1 ]
Grantz, Kyra H. [2 ]
Murray, Eleanor [3 ]
机构
[1] Wake Forest Univ, Dept Math & Stat, 127 Manchester Hall,Box 7388, Winston Salem, NC 27109 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[3] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02215 USA
关键词
infectious disease modeling; mechanistic models; Monte Carlo simulation; SARS-CoV-2; sensitivity analyses; statistics; uncertainty; TRANSMISSION; ROTAVIRUS; PARAMETER;
D O I
10.1093/aje/kwab013
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
This primer describes the statistical uncertainty in mechanistic models and provides R code to quantify it. We begin with an overview of mechanistic models for infectious disease, and then describe the sources of statistical uncertainty in the context of a case study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe the statistical uncertainty as belonging to 3 categories: data uncertainty, stochastic uncertainty, and structural uncertainty. We demonstrate how to account for each of these via statistical uncertainty measures and sensitivity analyses broadly, as well as in a specific case study on estimating the basic reproductive number, R-0, for SARS-CoV-2.
引用
收藏
页码:1377 / 1385
页数:9
相关论文
共 50 条
  • [41] Parameter Estimation in Hybrid Machine Learning and Mechanistic Models of Infectious Diseases
    Jhutty, Suneet Singh
    Hernandez-Vargas, Esteban A.
    IFAC PAPERSONLINE, 2022, 55 (16): : 178 - 183
  • [42] New Approaches to Quantifying the Magnitude and Causes of Uncertainty in Global Aerosol Models
    Carslaw, Kenneth S.
    Lee, Lindsay A.
    Pringle, Kirsty J.
    Mann, Graham W.
    Spracklen, Dominick V.
    Stier, Philip
    Pierce, Jeffrey R.
    NUCLEATION AND ATMOSPHERIC AEROSOLS, 2013, 1527 : 641 - 646
  • [43] Exploring Ancillary Parameters for Quantifying Interpolation Uncertainty in Digital Bathymetric Models
    Adediran, Elias
    Lowell, Kim
    Kastrisios, Christos
    Rice, Glen
    Zhang, Qi
    MARINE GEODESY, 2024, 47 (04) : 289 - 323
  • [44] Quantifying modeling uncertainty in simplified beam models for building response prediction
    Ghahari, S. Farid
    Sargsyan, Khachik
    Celebi, Mehmet
    Taciroglu, Ertugrul
    STRUCTURAL CONTROL & HEALTH MONITORING, 2022, 29 (11):
  • [45] Quantifying uncertainty of digital elevation models derived from topographic maps
    Weng, QH
    ADVANCES IN SPATIAL DATA HANDLING, 2002, : 403 - 418
  • [46] Quantifying uncertainty in simulations of the West African monsoon with the use of surrogate models
    Fischer, Matthias
    Knippertz, Peter
    van der Linden, Roderick
    Lemburg, Alexander
    Pante, Gregor
    Proppe, Carsten
    Marsham, John H.
    WEATHER AND CLIMATE DYNAMICS, 2024, 5 (02): : 511 - 536
  • [47] Model Risk in Risk Models: Quantifying Statistical Uncertainty in Active Risk
    Khang, Kevin
    JOURNAL OF PORTFOLIO MANAGEMENT, 2021, 47 (03): : 51 - 65
  • [48] QUANTIFYING UNCERTAINTY IN THE PREDICTION OF CARDIOVASCULAR DISEASE RISK IN NATIONAL POPULATIONS
    Custodio, Alejandro Rana
    Danaei, Goodarz
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2023, 81 (08) : 1851 - 1851
  • [49] Uncertainty of predicted greenhouse tomato production:: Mechanistic versus stochastic models?
    Schrevens, Eddie
    Bojaca, Carlos
    Cooman, Alexander
    PROCEEDINGS OF THE IIIRD INTERNATIONAL SYMPOSIUM ON MODELS FOR PLANT GROWTH, ENVIRONMENTAL CONTROL AND FARM MANAGEMENT IN PROTECTED CULTIVATION, 2006, (718): : 139 - +
  • [50] MECHANISTIC AND STATISTICAL MODELS OF SKIN DISEASE TRANSMISSION
    Lydeamore, Michael J.
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2020, 101 (01) : 174 - 176