Quantifying Uncertainty in Mechanistic Models of Infectious Disease

被引:8
|
作者
McGowan, Lucy D'Agostino [1 ]
Grantz, Kyra H. [2 ]
Murray, Eleanor [3 ]
机构
[1] Wake Forest Univ, Dept Math & Stat, 127 Manchester Hall,Box 7388, Winston Salem, NC 27109 USA
[2] Johns Hopkins Bloomberg Sch Publ Hlth, Dept Epidemiol, Baltimore, MD USA
[3] Boston Univ, Sch Publ Hlth, Dept Epidemiol, Boston, MA 02215 USA
关键词
infectious disease modeling; mechanistic models; Monte Carlo simulation; SARS-CoV-2; sensitivity analyses; statistics; uncertainty; TRANSMISSION; ROTAVIRUS; PARAMETER;
D O I
10.1093/aje/kwab013
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
This primer describes the statistical uncertainty in mechanistic models and provides R code to quantify it. We begin with an overview of mechanistic models for infectious disease, and then describe the sources of statistical uncertainty in the context of a case study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We describe the statistical uncertainty as belonging to 3 categories: data uncertainty, stochastic uncertainty, and structural uncertainty. We demonstrate how to account for each of these via statistical uncertainty measures and sensitivity analyses broadly, as well as in a specific case study on estimating the basic reproductive number, R-0, for SARS-CoV-2.
引用
下载
收藏
页码:1377 / 1385
页数:9
相关论文
共 50 条
  • [1] Infectious Disease in the Workplace: Quantifying Uncertainty in Transmission
    Jonathan I. D. Hamley
    Guido Beldi
    Daniel Sánchez-Taltavull
    Bulletin of Mathematical Biology, 2024, 86
  • [2] Infectious Disease in the Workplace: Quantifying Uncertainty in Transmission
    Hamley, Jonathan I. D.
    Beldi, Guido
    Sanchez-Taltavull, Daniel
    BULLETIN OF MATHEMATICAL BIOLOGY, 2024, 86 (03)
  • [3] Mechanistic Models of Infectious Disease and Their Impact on Public Health
    Lessler, Justin
    Cummings, Derek A. T.
    AMERICAN JOURNAL OF EPIDEMIOLOGY, 2016, 183 (05) : 415 - 422
  • [4] Quantifying Uncertainty in Epidemiological Models
    Jha, Sumit K.
    Ramanathan, Arvind
    2012 ASE INTERNATIONAL CONFERENCE ON BIOMEDICAL COMPUTING (BIOMEDCOM), 2012, : 80 - 85
  • [5] The Case for Uncertainty: Quantifying Isotopic Uncertainty with Bayesian Mixing Models
    Hamilton, Marian I.
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY, 2015, 156 : 158 - 158
  • [6] Quantifying the uncertainty of partitions for infinite mixture models
    Lavigne, Aurore
    Liverani, Silvia
    STATISTICS & PROBABILITY LETTERS, 2024, 204
  • [7] Quantifying the predictive uncertainty of complex numerical models
    McGrattan, Kevin
    Toman, Blaza
    METROLOGIA, 2011, 48 (03) : 173 - 180
  • [8] Quantifying uncertainty in stable isotope mixing models
    Davis, Paul
    Syme, James
    Heikoop, Jeffrey
    Fessenden-Rahn, Julianna
    Perkins, George
    Newman, Brent
    Chrystal, Abbey E.
    Hagerty, Shannon B.
    JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2015, 120 (05) : 903 - 923
  • [9] Quantifying uncertainty bounds, in anesthetic PKPD models
    Bibian, S
    Dumont, GA
    Huzmezan, M
    Ries, CR
    PROCEEDINGS OF THE 26TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-7, 2004, 26 : 786 - 789
  • [10] QUANTIFYING UNCERTAINTY IN CONTINUOUS FRAGMENTAION AIRBURST MODELS
    McMullan, S.
    Collins, G. S.
    METEORITICS & PLANETARY SCIENCE, 2018, 53 : 6212 - 6212