Thermo-economic optimization of an organic Rankine cycle system for large marine diesel engine waste heat recovery

被引:86
|
作者
Yang, Min-Hsiung [1 ]
Yeh, Rong-Hua [2 ]
机构
[1] Natl Kaohsiung Marine Univ, Dept Naval Architecture & Ocean Engn, Kaohsiung, Taiwan
[2] Natl Kaohsiung Marine Univ, Dept Marine Engn, Kaohsiung, Taiwan
关键词
ORC; Waste heat recovery; Thermo-economic; Optimal; Marine diesel engine; Net power output index; TEMPERATURE GEOTHERMAL SOURCES; WORKING FLUID SELECTION; THERMODYNAMIC ANALYSIS; PERFORMANCE ANALYSIS; POWER-PLANTS; ORC; EXPLOITATION; EXERGY; ENERGY; PART;
D O I
10.1016/j.energy.2015.01.036
中图分类号
O414.1 [热力学];
学科分类号
摘要
The thermo-economic optimization of an ORC (organic Rankine cycle) used to recover waste heat from large marine diesel engines are conducted numerically. The variations of net power output, thermal efficiency, and total cost of equipments of the ORC system with various turbine inlet and outlet pressures are investigated. The net power output index is first proposed to evaluate the performance for this waste heat recovery system. To consider the environmental protection, working fluids which are zero ozone depletion potential and low global warming potential are selected in the simulation of the ORC system. For the widely-used working fluid, R245fa, an improvement of 6% in thermal efficiency is obtained for the proposed system compared with the ORC system recovering heat from marine diesel engine. The results show that, among these working fluids, R1234yf performs the best in the optimal thermo-economic performance evaluation, followed by R1234ze, R152a, and R600a; R245fa performs the least favorably. In addition, the maximal thermo-economic performance of the presented ORC system with R1234yf is higher than that with R245fa by 9%. Finally, the calculated corresponding optimal thermal efficiency of the ORC system and turbine inlet and outlet pressures of working fluids are obtained and compared. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:256 / 268
页数:13
相关论文
共 50 条
  • [21] Thermo-Economic Multiobjective Optimization of a LOW Temperature Organic Rankine Cycle for Energy Recovery
    Omar Bernal-Lara, Ruben
    Flores-Tlacuahuac, Antonio
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (40) : 11477 - 11495
  • [22] Thermodynamic and economic performances optimization of an organic Rankine cycle system utilizing exhaust gas of a large marine diesel engine
    Yang, Min-Hsiung
    Yeh, Rong-Hua
    APPLIED ENERGY, 2015, 149 : 1 - 12
  • [23] Thermodynamic and Thermo-economic Analysis of Integrated Organic Rankine Cycle for Waste Heat Recovery from Vapor Compression Refrigeration Cycle
    Asim, Muhammad
    Leung, Michael K. H.
    Shan, Zhiqiang
    Li, Yingying
    Leung, Dennis Y. C.
    Ni, Meng
    LEVERAGING ENERGY TECHNOLOGIES AND POLICY OPTIONS FOR LOW CARBON CITIES, 2017, 143 : 192 - 198
  • [24] Thermodynamic analysis and performance optimization of an Organic Rankine Cycle (ORC) waste heat recovery system for marine diesel engines
    Song, Jian
    Song, Yin
    Gu, Chun-Wei
    ENERGY, 2015, 82 : 976 - 985
  • [25] Thermo-economic optimization of waste heat recovery systems
    Nicolae, Livia-Catalina
    Gewald, Daniela
    UPB Scientific Bulletin, Series D: Mechanical Engineering, 2013, 75 (02): : 41 - 48
  • [26] Thermo-Economic Performance of an Organic Rankine Cycle System Recovering Waste Heat Onboard an Offshore Service Vessel
    Ng, ChunWee
    Tam, Ivan C. K.
    Wu, Dawei
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2020, 8 (05)
  • [27] Utilisation of diesel engine waste heat by Organic Rankine Cycle
    Koelsch, Benedikt
    Radulovic, Jovana
    APPLIED THERMAL ENGINEERING, 2015, 78 : 437 - 448
  • [28] THERMO-ECONOMIC OPTIMIZATION OF SOLAR-DRIVEN ORGANIC RANKINE CYCLE
    Ma, Piyin
    Chai, Junlin
    Yang, Fubin
    Zhang, Hongguang
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2024, 45 (10): : 381 - 390
  • [29] Thermo-economic optimization of small-scale Organic Rankine Cycle: A case study for low-grade industrial waste heat recovery
    Peris, Bernardo
    Navarro-Esbri, Joaquin
    Mateu-Royo, Carlos
    Mota-Babiloni, Adrian
    Moles, Francisco
    Gutierrez-Trashorras, Antonio J.
    Amat-Albuixech, Marta
    ENERGY, 2020, 213
  • [30] Thermo-economic analysis and optimization of a combined cooling and power (CCP) system for engine waste heat recovery
    Xia, Jiaxi
    Wang, Jiangfeng
    Lou, Juwei
    Zhao, Pan
    Dai, Yiping
    ENERGY CONVERSION AND MANAGEMENT, 2016, 128 : 303 - 316