Experimental and numerical analysis of a three-fluid membrane-based ionic liquid desiccant absorber

被引:9
|
作者
Bhagwat, Rohit [1 ]
Schmid, Michael [1 ]
Moghaddam, Saeed [1 ]
机构
[1] Univ Florida, Dept Mech & Aerosp Engn, Gainesville, FL 32603 USA
关键词
Membrane-based absorber; Heat and mass exchanger; Ionic liquid desiccant; Dehumidification; Separate sensible and latent cooling; MASS-TRANSFER; PERFORMANCE ANALYSIS; FLUID-FLOW; HEAT; DEHUMIDIFICATION; EXCHANGER; MODEL;
D O I
10.1016/j.ijheatmasstransfer.2021.122122
中图分类号
O414.1 [热力学];
学科分类号
摘要
Membrane-based liquid desiccant system is a promising technology for efficient humidity control. Also, in comparison to systems using conventional desiccants, ionic liquid (IL) desiccants enable increased system operational envelope and efficiency. In this study, a finite difference numerical model is developed for an IL-based counter and cross flow internally cooled polymer heat and mass exchanger (i.e. absorber). A super-hydrophobic membrane separates the IL desiccant and air flows while allowing moisture transfer from air to IL. The numerical model determines the outlet conditions of all three absorber fluids (water, desiccant, and air), establishing the absorber heat and mass transfer performance. The model was compared with the experimental data obtained from an IL desiccant absorber under a wide variety of water, desiccant, and air inlet conditions. The maximum discrepancy between the model predictions and experimental data for the air exit temperature, air exit relative humidity, cooling water exit temperature, and solution exit temperature are 4%, 9%, 5%, and 2%, respectively. A comprehensive parametric study is then conducted to evaluate the sensitivity of the absorber performance to different input conditions. This highly accurate model and parametric study of a membrane-based absorber can be utilized in design and performance analysis of emerging liquid desiccant dehumidification and separate sensible and latent cooling (SSLC) systems. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Thermodynamic analysis of internally-cooled membrane-based liquid desiccant dehumidifiers of different flow types
    Li, Wei
    Yao, Ye
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2021, 166
  • [22] Performance analysis of different flow types of internally-cooled membrane-based liquid desiccant dehumidifiers
    Li, Wei
    Yao, Ye
    ENERGY, 2021, 228
  • [23] Numerical analysis of solid-liquid-air three-fluid transient flow for air lift system
    Yoon, CH
    Park, YC
    Lee, DK
    Kwon, SK
    Kwon, OK
    PROCEEDINGS OF THE FOURTEENTH (2004) INTERNATIONAL OFFSHORE AND POLAR ENGINEERING CONFERENCE, VOL 1, 2004, : 66 - 71
  • [24] Performance testing of a cross-flow membrane-based liquid desiccant dehumidification system
    Bai, Hongyu
    Zhu, Jie
    Chen, Ziwei
    Ma, Lina
    Wang, Ruzhu
    Li, Tingxian
    APPLIED THERMAL ENGINEERING, 2017, 119 : 119 - 131
  • [25] Performance of counter flow membrane-based annular pipe liquid desiccant air conditioner
    Cihan, Ertugrul
    Kavasogullari, Baris
    Demir, Hasan
    APPLIED THERMAL ENGINEERING, 2020, 180
  • [26] A heat pump driven and hollow fiber membrane-based liquid desiccant air dehumidification system: Modeling and experimental validation
    Zhang, Li-Zhi
    Zhang, Ning
    ENERGY, 2014, 65 : 441 - 451
  • [27] Performance Investigation of a Hollow Fiber Membrane-Based Desiccant Liquid Air Dehumidification System
    Englart, Sebastian
    Rajski, Krzysztof
    ENERGIES, 2021, 14 (11)
  • [28] State-space model for transient behavior of membrane-based liquid desiccant dehumidifier
    Li, Wei
    Yao, Ye
    Shekhar, Divyanshu Kumar
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 144
  • [29] Hollow fibre membrane-based liquid desiccant humidity control for controlled environment agriculture
    Lefers, Ryan M.
    Bettahalli, N. M. Srivatsa
    Fedoroff, Nina, V
    Ghaffour, Noreddine
    Davies, Philip A.
    Nunes, Suzana P.
    Leiknes, TorOve
    BIOSYSTEMS ENGINEERING, 2019, 183 : 47 - 57
  • [30] Performance Analysis and Limiting Parameters of Cross-flow Membrane-based Liquid-desiccant Air Dehumidifiers
    Ahmadi, Behnam
    Ahmadi, Masoud
    Nawaz, Kashif
    Momen, Ayyoub M.
    Bigham, Sajjad
    INTERNATIONAL JOURNAL OF REFRIGERATION, 2021, 132 : 21 - 29