Thermal effects of photonic-bandgap fiber laser

被引:0
|
作者
Chen, Haitao [1 ,2 ]
Yang, Huajun [2 ]
Zou, Xuefang [3 ]
Gao, Zenghui [1 ]
机构
[1] Yibin Univ, Sch Phys & Elect Engn, Yibin 644000, Sichuan, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China
[3] Chengdu Sports Univ, Dept Sports, Chengdu 610041, Sichuan, Peoples R China
来源
OPTIK | 2011年 / 122卷 / 09期
基金
中国国家自然科学基金;
关键词
Photonic-bandgap fiber laser; Photonic-bandgap fiber; Thermal effects;
D O I
10.1016/j.ijleo.2010.05.021
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A steady thermal model of photonic-bandgap fiber laser (PBFL) is presented. Temperature distribution in PBFL is analyzed by heat transfer equations and numerical finite-element method (FEM) separately. Thermal stress distribution caused by the temperature difference between the inner and outer claddings is calculated. The results show that the thermal stresses in this fiber structure are low less than the critical tensile stress in fused silica. (C) 2010 Elsevier GmbH. All rights reserved.
引用
收藏
页码:769 / 772
页数:4
相关论文
共 50 条
  • [21] Exceptionally directional sources with photonic-bandgap crystals
    Biswas, R
    Ozbay, E
    Temelkuran, B
    Bayindir, M
    Sigalas, MM
    Ho, KM
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2001, 18 (11) : 1684 - 1689
  • [22] Si-based photonic crystals and photonic-bandgap waveguides
    Notomi, Masaya
    Shinya, Akihiko
    Kuramochi, Eiichi
    Yokohama, Itaru
    Takahashi, Chiharu
    Yamada, Koji
    Takahashi, Jun-Ichi
    Kawashima, Takayuki
    Kawakami, Shojiro
    IEICE Transactions on Electronics, 2002, E85-C (04) : 1025 - 1032
  • [23] Simulating gravity-assisted loading of laser-cooled atoms into a hollow-core photonic-bandgap fiber
    Yoon, Taehyun
    Bajcsy, Michal
    JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2020, 53 (13)
  • [24] Single-Polarization Elliptical-Hole Lattice Core Photonic-Bandgap Fiber
    Eguchi, Masashi
    Tsuji, Yasuhide
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (01) : 177 - 182
  • [25] A superconducting quantum simulator based on a photonic-bandgap metamaterial
    Zhang, Xueyue
    Kim, Eunjong
    Mark, Daniel K.
    Choi, Soonwon
    Painter, Oskar
    SCIENCE, 2023, 379 (6629) : 278 - 283
  • [26] PHOTONIC-BANDGAP FIBRE Colour-tunable textiles
    Won, Rachel
    NATURE PHOTONICS, 2008, 2 (11) : 650 - 650
  • [27] PHOTONIC-BANDGAP FIBERS Propagation time through this fiber has zero sensitivity to temperature change
    Wallace, John
    LASER FOCUS WORLD, 2017, 53 (07): : 14 - 16
  • [28] Measurement of the reflection and loss of the hybrid air-core photonic-bandgap fiber ring resonator
    Li, Hanzhao
    Zhang, Jianjie
    Wang, Linglan
    Ma, Huilian
    Jin, Zhonghe
    APPLIED OPTICS, 2016, 55 (32) : 9329 - 9333
  • [29] Monolithic waveguide filters using printed photonic-bandgap materials
    Kyriazidou, CA
    Contopanagos, HF
    Alexópoulos, NG
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2001, 49 (02) : 297 - 307
  • [30] Organic lasers based on lithographically defined photonic-bandgap resonators
    Berggren, M
    Dodabalapur, A
    Slusher, RE
    Bao, Z
    Timko, A
    Nalamasu, O
    ELECTRONICS LETTERS, 1998, 34 (01) : 90 - 91