A multi-modal parcellation of human cerebral cortex

被引:2849
|
作者
Glasser, Matthew F. [1 ]
Coalson, Timothy S. [1 ]
Robinson, Emma C. [2 ,3 ]
Hacker, Carl D. [4 ]
Harwell, John [1 ]
Yacoub, Essa [5 ]
Ugurbil, Kamil [5 ]
Andersson, Jesper [2 ]
Beckmann, Christian F. [6 ,7 ]
Jenkinson, Mark [2 ]
Smith, Stephen M. [2 ]
Van Essen, David C. [1 ]
机构
[1] Washington Univ, Sch Med, Dept Neurosci, St Louis, MO 63110 USA
[2] Univ Oxford, John Radcliffe Hosp, Nuffield Dept Clin Neurosci, FMRIB Ctr, Oxford OX3 9DU, England
[3] Imperial Coll, Dept Comp, London SW7 2AZ, England
[4] Washington Univ, Dept Biomed Engn, St Louis, MO 63110 USA
[5] Univ Minnesota, Ctr Magnet Resonance Res, Minneapolis, MN 55455 USA
[6] Radboud Univ Nijmegen, Donders Inst Brain Cognit & Behav, NL-6525 EN Nijmegen, Netherlands
[7] Radboud Univ Nijmegen, Med Ctr Nijmegen, Dept Cognit Neurosci, NL-6500 HB Nijmegen, Netherlands
基金
英国惠康基金;
关键词
HUMAN CONNECTOME PROJECT; RESTING-STATE FMRI; HEMISPHERIC ASYMMETRIES; FUNCTIONAL CONNECTIVITY; INDIVIDUAL-DIFFERENCES; BRAIN ACTIVITY; MYELIN CONTENT; MRI; AREAS; ORGANIZATION;
D O I
10.1038/nature18933
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Understanding the amazingly complex human cerebral cortex requires a map (or parcellation) of its major subdivisions, known as cortical areas. Making an accurate areal map has been a century-old objective in neuroscience. Using multimodal magnetic resonance images from the Human Connectome Project (HCP) and an objective semi-automated neuroanatomical approach, we delineated 180 areas per hemisphere bounded by sharp changes in cortical architecture, function, connectivity, and/or topography in a precisely aligned group average of 210 healthy young adults. We characterized 97 new areas and 83 areas previously reported using post-mortem microscopy or other specialized study-specific approaches. To enable automated delineation and identification of these areas in new HCP subjects and in future studies, we trained a machine-learning classifier to recognize the multi-modal 'fingerprint' of each cortical area. This classifier detected the presence of 96.6% of the cortical areas in new subjects, replicated the group parcellation, and could correctly locate areas in individuals with atypical parcellations. The freely available parcellation and classifier will enable substantially improved neuroanatomical precision for studies of the structural and functional organization of human cerebral cortex and its variation across individuals and in development, aging, and disease.
引用
收藏
页码:171 / +
页数:11
相关论文
共 50 条
  • [21] Multi-modal investigation of transcranial ultrasound-induced neuroplasticity of the human motor cortex
    Samuel, Nardin
    Zeng, Ke
    Harmsen, Irene E.
    Ding, Mandy Yi Rong
    Darmani, Ghazaleh
    Sarica, Can
    Santyr, Brendan
    Vetkas, Artur
    Pancholi, Aditya
    Fomenko, Anton
    Milano, Vanessa
    Yamamoto, Kazuaki
    Saha, Utpal
    Wennberg, Richard
    Rowland, Nathan C.
    Chen, Robert
    Lozano, Andres M.
    BRAIN STIMULATION, 2022, 15 (06) : 1337 - 1347
  • [22] Human brain mapping: A systematic comparison of parcellation methods for the human cerebral cortex
    Arslan, Salim
    Ktena, Sofia Ira
    Makropoulos, Antonios
    Robinson, Emma C.
    Rueckert, Daniel
    Parisot, Sarah
    NEUROIMAGE, 2018, 170 : 5 - 30
  • [23] A tracking approach to parcellation of the cerebral cortex
    Adamson, C
    Johnston, L
    Inder, T
    Rees, S
    Mareels, I
    Egan, G
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2005, PT 1, 2005, 3749 : 294 - 301
  • [24] Multi-modal imaging of anoxic depolarization and hemodynamic changes induced by cardiac arrest in the rat cerebral cortex
    Farkas, Eszter
    Bari, Ferenc
    Obrenovitch, Tihomir P.
    NEUROIMAGE, 2010, 51 (02) : 734 - 742
  • [25] Multi-modal anchor adaptation learning for multi-modal summarization
    Chen, Zhongfeng
    Lu, Zhenyu
    Rong, Huan
    Zhao, Chuanjun
    Xu, Fan
    NEUROCOMPUTING, 2024, 570
  • [26] A Multi-Modal Approach to Sensing Human Emotion
    Gibilisco, Hannah
    Laubenberger, Michael
    Spiridonov, Valerii
    Belga, Jacob
    Hallstrom, Jason O.
    Peluso, Paul R.
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 2499 - 2502
  • [27] Human factors of multi-modal ubiquitous computing
    Haniff, DJ
    Baber, C
    Edmondson, W
    HANDHELD AND UBIQUITOUS COMPUTING, PROCEEDINGS, 1999, 1707 : 346 - 348
  • [28] Multi-modal Sensing for Human Activity Recognition
    Bruno, Barbara
    Grosinger, Jasmin
    Mastrogiovanni, Fulvio
    Pecora, Federico
    Saffiotti, Alessandro
    Sathyakeerthy, Subhash
    Sgorbissa, Antonio
    2015 24TH IEEE INTERNATIONAL SYMPOSIUM ON ROBOT AND HUMAN INTERACTIVE COMMUNICATION (RO-MAN), 2015, : 594 - 600
  • [29] Multi-modal biometrics involving the human ear
    Middendorff, Christopher
    Bowyer, Kevin W.
    Yan, Ping
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 3905 - +
  • [30] Investigation of the development of cerebral infarction using multi-modal imaging
    Hokamura, Kazuya
    Magata, Yasuhiro
    Ogawa, Mikako
    Natsume, Takahiro
    Umemura, Kazuo
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2014, 124 : 149P - 149P