Influence of twisted tape inserts on energy and exergy performance of an evacuated Tube-based solar air collector

被引:15
|
作者
Kumar, A. Veera [1 ]
Arjunan, T. V. [2 ]
Seenivasan, D. [1 ]
Venkatramanan, R. [1 ]
Vijayan, S. [3 ]
Matheswaran, M. M. [4 ]
机构
[1] Coimbatore Inst Engn & Technol, Dept Mech Engn, Coimbatore 641109, Tamil Nadu, India
[2] Guru Ghasidas Vishwavidyalaya Cent Univ, Sch Studies Engn & Technol, Dept Mech Engn, Bilaspur 495009, Chattisgarh, India
[3] Natl Inst Technol, Dept Mech Engn, Tiruchirappalli 620015, India
[4] Jansons Inst Technol, Dept Mech Engn, Coimbatore 641659, Tamil Nadu, India
关键词
Baffles; Twisted tape; Evacuated tube air collector; Twist ratio; Thermal Performance; Hole diameter ratio; HEAT-EXCHANGER TUBE; THERMAL PERFORMANCE; THERMOHYDRAULIC PERFORMANCE; CIRCULAR TUBE; AUGMENTATION;
D O I
10.1016/j.solener.2021.07.074
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Energy and exergy behaviour of an Evacuated Tube with Inserted Baffles Solar Air Collector (ETIBSAC) with various design configurations of twisted tape is analyzed through an analytical model. Among those configurations, Loose-Fit Perforated Twisted Tape (LFPTT) exhibits better performance in terms of energy effectiveness. Hence, LFPTT was selected for further investigation to identify the influence of helical twist ratio (y/D) and tape hole diameter ratio (d/D). The analytical model predicts the energy and exergy performance of the ETIBSAC with LFPTT inserts (y/D) = 2, 2.5 and 3 & (d/D) = 0.0714, 0.107 and 0.143. The results show that ETIBSAC with LFPTT produces the highest effective thermal and exergy efficiencies at lower airflow rates. The peak thermal efficiency of 62.33% was attained at 400 kg/h with (y/D) = 2 & (d/D) = 0.0714. The exergy efficiency attained its peak value of 3.91% and reduces with increasing airflow rate due to more exergy destruction. It is concluded that the proposed insertion of twisted tapes can be adopted for enhancing the performance of the system.
引用
收藏
页码:892 / 904
页数:13
相关论文
共 50 条
  • [41] A review on the thermal performance of nanofluid inside circular tube with twisted tape inserts
    Ahmad, Saadah
    Abdullah, Shahrir
    Sopian, Kamaruzzaman
    ADVANCES IN MECHANICAL ENGINEERING, 2020, 12 (06)
  • [42] Study on Optical Performance of an Evacuated Tube Solar Collector With Inner Concentrating
    Xie, Mingxi
    Chai, Shaowei
    Dai, Yanjun
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2022, 43 (10): : 2612 - 2622
  • [43] An Experimental Comparison of the Performance of Various Evacuated Tube Solar Collector Designs
    Said, Sana
    Mellouli, Sofiene
    Alqahtani, Talal
    Algarni, Salem
    Ajjel, Ridha
    Ghachem, Kaouther
    Kolsi, Lioua
    SUSTAINABILITY, 2023, 15 (06)
  • [44] Thermal Performance of Nanofluid Flow Inside Evacuated Tube Solar Collector
    Yazdi, Mohammad H.
    Solomin, Evgeny
    Fudholi, Ahmad
    Divandari, Ghasem
    Sopian, Kamanizzaman
    Chong, Perk Lin
    INTERNATIONAL JOURNAL OF HEAT AND TECHNOLOGY, 2021, 39 (04) : 1262 - 1270
  • [45] Optimization and thermal performance of evacuated tube solar collector with various nanofluids
    Yurddas, Ali
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2020, 152
  • [46] Estimation and optimization of thermal performance of evacuated tube solar collector system
    Erkan Dikmen
    Mahir Ayaz
    H. Hüseyin Ezen
    Ecir U. Küçüksille
    Arzu Şencan Şahin
    Heat and Mass Transfer, 2014, 50 : 711 - 719
  • [47] Performance enhancement of stepped solar still coupled with evacuated tube collector
    Patil, Bhushan
    Hole, Jitendra
    Wankhede, Sagar
    JOURNAL OF THERMAL ENGINEERING, 2023, 10 (01): : 1177 - 1188
  • [48] Estimation and optimization of thermal performance of evacuated tube solar collector system
    Dikmen, Erkan
    Ayaz, Mahir
    Ezen, H. Huseyin
    Kucuksille, Ecir U.
    Sahin, Arzu Sencan
    HEAT AND MASS TRANSFER, 2014, 50 (05) : 711 - 719
  • [49] Performance Investigation of Solar Evacuated Tube Collector Using TRNSYS in Tehran
    Mohammadkarim, Ahmadreza
    Kasaeian, Alibakhsh
    Kaabinejadian, Abdolrazagh
    INTERNATIONAL JOURNAL OF RENEWABLE ENERGY RESEARCH, 2014, 4 (02): : 497 - 503
  • [50] Performance of a solar still integrated with evacuated tube collector in natural mode
    Singh, Ragh Vendra
    Kumar, Shiv
    Hasan, M. M.
    Khan, M. Emran
    Tiwari, G. N.
    DESALINATION, 2013, 318 : 25 - 33