Multi-scale Global Reasoning Unit for Semantic Segmentation

被引:0
|
作者
Domae, Yukihiro [1 ]
Aizawa, Hiroaki [1 ]
Kato, Kunihito [1 ]
机构
[1] Gifu Univ, 1-1 Yanagido, Gifu 5011193, Japan
来源
关键词
Semantic segmentation; Graph convolution; Global reasoning;
D O I
10.1007/978-3-030-81638-4_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Obtaining context information in a scene is an essential ability for semantic segmentation. GloRe [1] learns to infer the context from a graph-based feature constructed by the GlobalReasoning unit. The graph nodes are features that are segmented into regions in image space, and the edges are relationships between nodes. Therefore, a failure to construct the graph results in poor performance. In this study, to resolve this problem, we propose a novel unit to construct the graph using multi-scale information. We call it Multi-scale Global Reasoning Unit. It considers the relationship between each region that retains detailed multi-scale spatial information. Specifically, the proposed unit consists of a Feature Aggregation Module and a Global Reasoning Module. The former selects the features required to construct the graph using the multi-scale features. The latter uses GloRe to infer the relationship from the features. The unit is trained in an end-to-end manner. In experiments, we evaluate the effectiveness of the proposed method on Cityscapes and Pascal-context datasets. As a result, we confirmed that the proposed method outperforms the original GloRe.
引用
收藏
页码:46 / 56
页数:11
相关论文
共 50 条
  • [31] Adaptive multi-scale feature fusion with spatial translation for semantic segmentation
    Wang, Hongru
    Wang, Haoyu
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, : 8337 - 8348
  • [32] Multi-scale fusion for RGB-D indoor semantic segmentation
    Shiyi Jiang
    Yang Xu
    Danyang Li
    Runze Fan
    Scientific Reports, 12 (1)
  • [33] Multi-scale deep context convolutional neural networks for semantic segmentation
    Quan Zhou
    Wenbing Yang
    Guangwei Gao
    Weihua Ou
    Huimin Lu
    Jie Chen
    Longin Jan Latecki
    World Wide Web, 2019, 22 : 555 - 570
  • [34] Multi-scale Convolutional Neural Network for SAR Image Semantic Segmentation
    Duan, Yiping
    Tao, Xiaoming
    Han, Chaoyi
    Qin, Xiaowei
    Lu, Jianhua
    2018 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2018,
  • [35] Semantic Segmentation Method Based on Residual and Multi-Scale Feature Fusion
    Xiu, Chunbo
    Su, Huan
    Su, Xuemiao
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 2078 - 2083
  • [36] Multi-scale deep context convolutional neural networks for semantic segmentation
    Zhou, Quan
    Yang, Wenbing
    Gao, Guangwei
    Ou, Weihua
    Lu, Huimin
    Chen, Jie
    Latecki, Longin Jan
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2019, 22 (02): : 555 - 570
  • [37] Multi-Scale Context Aggregation for Semantic Segmentation of Remote Sensing Images
    Zhang, Jing
    Lin, Shaofu
    Ding, Lei
    Bruzzone, Lorenzo
    REMOTE SENSING, 2020, 12 (04)
  • [38] A multi-scale strategy for deep semantic segmentation with convolutional neural networks
    Zhao, Bonan
    Zhang, Xiaoshan
    Li, Zheng
    Hu, Xianliang
    NEUROCOMPUTING, 2019, 365 : 273 - 284
  • [39] Multi-Scale Convolutional Features Network for Semantic Segmentation in Indoor Scenes
    Wang, Yanran
    Chen, Qingliang
    Chen, Shilang
    Wu, Junjun
    IEEE ACCESS, 2020, 8 : 89575 - 89583
  • [40] Multi-Scale Feature Aggregation Network for Semantic Segmentation of Land Cover
    Shen, Xu
    Weng, Liguo
    Xia, Min
    Lin, Haifeng
    REMOTE SENSING, 2022, 14 (23)