Controlled Dense Coding with Non-Symmetric Quantum State

被引:5
|
作者
Liu, Xiao-Wei [1 ]
机构
[1] Nanchang Normal Univ, Dept Math & Comp Sci, Nanchang 330032, Peoples R China
关键词
Dense coding; Amount of information; Local measurement;
D O I
10.1007/s10773-014-2322-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We propose a controlled dense coding scheme using a d x 2 x 2 dimensional entangled state. It is shown that the supervisor can control the average amount of information transmitted from the sender to the receiver by adjusting the local measurement angle.
引用
收藏
页码:1253 / 1257
页数:5
相关论文
共 50 条
  • [41] On a class of non-symmetric diffusions containing fully non-symmetric distorted Brownian motions
    Trutnau, G
    FORUM MATHEMATICUM, 2003, 15 (03) : 409 - 437
  • [42] On non-symmetric commutative association schemes with exactly one pair of non-symmetric relations
    Chia, G. L.
    Kok, W. K.
    DISCRETE MATHEMATICS, 2006, 306 (24) : 3189 - 3222
  • [43] Controlled Dense Coding with a Four-Particle Non-maximally Entangled State
    Hai-Qing Wan
    International Journal of Theoretical Physics, 2010, 49 : 2172 - 2179
  • [44] Controlled Dense Coding with a Four-Particle Non-maximally Entangled State
    Wan, Hai-Qing
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (09) : 2172 - 2179
  • [45] Non-symmetric Pauli spin blockade in a silicon double quantum dot
    Theodor Lundberg
    David J. Ibberson
    Jing Li
    Louis Hutin
    José C. Abadillo-Uriel
    Michele Filippone
    Benoit Bertrand
    Andreas Nunnenkamp
    Chang-Min Lee
    Nadia Stelmashenko
    Jason W. A. Robinson
    Maud Vinet
    Lisa Ibberson
    Yann-Michel Niquet
    M. Fernando Gonzalez-Zalba
    npj Quantum Information, 10
  • [46] Non-symmetric Pauli spin blockade in a silicon double quantum dot
    Lundberg, Theodor
    Ibberson, David J.
    Li, Jing
    Hutin, Louis
    Abadillo-Uriel, Jose C.
    Filippone, Michele
    Bertrand, Benoit
    Nunnenkamp, Andreas
    Lee, Chang-Min
    Stelmashenko, Nadia
    Robinson, Jason W. A.
    Vinet, Maud
    Ibberson, Lisa
    Niquet, Yann-Michel
    Gonzalez-Zalba, M. Fernando
    NPJ QUANTUM INFORMATION, 2024, 10 (01)
  • [47] Quantum chaos in non-symmetric potential well in a tilted magnetic field
    Yuan, GY
    Yang, SP
    Fan, HL
    Chang, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2004, 18 (17-19): : 2752 - 2756
  • [48] Quantum key distribution rates from non-symmetric conic optimization
    Lorente, Andres Gonzalez
    Parellada, Pablo, V
    Castillo-Celeita, Miguel
    Araujo, Mateus
    QUANTUM, 2025, 9
  • [49] NON-SYMMETRIC ASSOCIATION SCHEMES OF SYMMETRIC MATRICES
    霍元极
    万哲先
    Chinese Science Bulletin, 1991, (18) : 1501 - 1505
  • [50] The quantum Knizhnik-Zamolodchikov equation and non-symmetric Macdonald polynomials
    Kasatani, Masahiro
    Takeyama, Yoshihiro
    FUNKCIALAJ EKVACIOJ-SERIO INTERNACIA, 2007, 50 (03): : 491 - 509