Interior Penalty Discontinuous Galerkin Method for the Time-Domain Maxwell's Equations

被引:9
|
作者
Dosopoulos, Stylianos [1 ]
Lee, Jin-Fa [1 ]
机构
[1] Ohio State Univ, Electrosci Lab, ECE Dept, Columbus, OH 43212 USA
基金
日本学术振兴会;
关键词
Discontinuous Galerkin (DG); finite elements; local time-stepping; time-domain;
D O I
10.1109/TMAG.2010.2043235
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Discontinuous Galerkin (DG) methods support elements of various types, nonmatching grid and varying polynomial order in each element. In DG methods continuity at element interfaces is weakly enforced with the addition of proper penalty terms on the variational formulation commonly referred to as numerical fluxes. An interior penalty approach to derive a DG method for solving the two first order Maxwell's equations in the time domain is presented. The proposed method is explicit and conditionally stable. In addition, a local time-stepping strategy is applied to increase efficiency and reduce the computational time.
引用
收藏
页码:3512 / 3515
页数:4
相关论文
共 50 条
  • [31] Discontinuous Galerkin sparse grids methods for time domain Maxwell's equations
    D'Azevedo, Eduardo
    Green, David L.
    Mu, Lin
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2020, 256
  • [32] Divergence Error Based p-Adaptive Discontinuous Galerkin Solution of Time-domain Maxwell's Equations
    Tiwari A.
    Chatterjee A.
    [J]. Progress In Electromagnetics Research B, 2022, 96 : 153 - 172
  • [33] Discontinuous Galerkin time-domain solution of Maxwell's equations on locally-refined nonconforming Cartesian grids
    Canouet, N
    Fezoui, L
    Piperno, S
    [J]. COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2005, 24 (04) : 1381 - 1401
  • [34] Multirate Technique for Explicit Discontinuous Galerkin Computations of Time-Domain Maxwell Equations on Complex Geometries
    Kameni, A.
    Seny, B.
    Pichon, L.
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2016, 52 (03)
  • [35] A 3-D Discontinuous Spectral Element Time-Domain Method for Maxwell's Equations
    Lee, Joon-Ho
    Chen, Jiefu
    Liu, Qing Huo
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2009, 57 (09) : 2666 - 2674
  • [36] A Legendre Pseudospectral Penalty Scheme for Solving Time-Domain Maxwell’s Equations
    Chun-Hao Teng
    Bang-Yan Lin
    Hung-Chun Chang
    Hei-Chen Hsu
    Chien-Nan Lin
    Ko-An Feng
    [J]. Journal of Scientific Computing, 2008, 36 : 351 - 390
  • [37] A Legendre pseudospectral penalty scheme for solving time-domain Maxwell's equations
    Teng, Chun-Hao
    Lin, Bang-Yan
    Chang, Hung-Chun
    Hsu, Hei-Chen
    Lin, Chien-Nan
    Feng, Ko-An
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2008, 36 (03) : 351 - 390
  • [38] Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes
    Fezoui, L
    Lanteri, S
    Lohrengel, S
    Piperno, S
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (06): : 1149 - 1176
  • [39] ANALYSIS OF THE DISCONTINUOUS GALERKIN INTERIOR PENALTY METHOD WITH SOLENOIDAL APPROXIMATIONS FOR THE STOKES EQUATIONS
    Montlaur, Adeline
    Fernandez-Mendez, Sonia
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2014, 11 (04) : 715 - 725
  • [40] Construction of Discontinuous Galerkin Time Domain methods for Maxwell's equations on staggered grids
    Gjonaj, Erion
    Brueck, Sascha
    Weiland, Thomas
    [J]. PROCEEDINGS OF 2013 URSI INTERNATIONAL SYMPOSIUM ON ELECTROMAGNETIC THEORY (EMTS), 2013, : 1003 - 1006