Skyrmion ratchet in funnel geometries

被引:26
|
作者
Bellizotti Souza, J. C. [1 ]
Vizarim, N. P. [2 ]
Reichhardt, C. J. O. [3 ,4 ]
Reichhardt, C. [3 ,4 ]
Venegas, P. A. [1 ]
机构
[1] UNESP Univ Estadual Paulista, Fac Ciencias, Dept Fis, Caixa Postal 473, BR-17033360 Bauru, SP, Brazil
[2] Univ Estadual Paulista UNESP, Fac Ciencias, Programa Posgrad Ciencia & Tecnol Mat, POSMAT, Caixa Postal 473, BR-17033360 Bauru, SP, Brazil
[3] Los Alamos Natl Lab, Theoret Div, Los Alamos, NM 87545 USA
[4] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
基金
巴西圣保罗研究基金会;
关键词
MAGNETIC SKYRMIONS; REVERSALS; DYNAMICS;
D O I
10.1103/PhysRevB.104.054434
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Using a particle-based model, we simulate the behavior of a skyrmion under the influence of asymmetric funnel geometries and ac driving at zero temperature. We specifically investigate possibilities for controlling the skyrmion motion by harnessing a ratchet effect. Our results show that as the amplitude of a unidirectional ac drive is increased, the skyrmion can be set into motion along either the easy or hard direction of the funnel depending on the ac driving direction. When the ac drive is parallel to the funnel axis, the skyrmion flows in the easy direction and its average velocity is quantized. In contrast, when the ac drive is perpendicular to the funnel axis, a Magnus-induced ratchet effect occurs, and the skyrmion moves along the hard direction with a constant average velocity. For biharmonic ac driving of equal amplitude along both the parallel and perpendicular directions, we observe a reentrant pinning phase where the skyrmion ratchet vanishes. For asymmetric biharmonic ac drives, the skyrmion exhibits a combination of effects and can move in either the easy or hard direction depending on the configuration of the ac drives. These results indicate that it is possible to achieve controlled skyrmion motion using funnel geometries, and we discuss ways in which this could be harnessed to perform data transfer operations.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Commensurability between Element Symmetry and the Number of Skyrmions Governing Skyrmion Diffusion in Confined Geometries
    Song, Chengkun
    Kerber, Nico
    RothoErl, Jan
    Ge, Yuqing
    Raab, Klaus
    Seng, Boris
    Brems, Maarten A.
    Dittrich, Florian
    Reeve, Robert M.
    Wang, Jianbo
    Liu, Qingfang
    Virnau, Peter
    Klaeui, Mathias
    ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (19)
  • [22] Current-induced skyrmion dynamics in constricted geometries (vol 8, pg 742, 2013)
    Iwasaki, Junichi
    Mochizuki, Masahito
    Nagaosa, Naoto
    NATURE NANOTECHNOLOGY, 2014, 9 (02) : 156 - 156
  • [23] Nonexistence of Skyrmion-Skyrmion and Skyrmion-anti-Skyrmion static equilibria
    Gibbons, G. W.
    Warnick, C. M.
    Wong, W. W.
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (01)
  • [24] THE SKYRMION-SKYRMION INTERACTION
    JACKSON, A
    JACKSON, AD
    PASQUIER, V
    NUCLEAR PHYSICS A, 1985, 432 (03) : 567 - 609
  • [25] SKYRMION-SKYRMION INTERACTION
    OKA, M
    NUCLEAR PHYSICS A, 1987, 463 (1-2) : C247 - C254
  • [26] Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory
    Zhang, Xichao
    Zhao, G. P.
    Fangohr, Hans
    Liu, J. Ping
    Xia, W. X.
    Xia, J.
    Morvan, F. J.
    SCIENTIFIC REPORTS, 2015, 5
  • [27] Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory
    Xichao Zhang
    G. P. Zhao
    Hans Fangohr
    J. Ping Liu
    W. X. Xia
    J. Xia
    F. J. Morvan
    Scientific Reports, 5
  • [28] 'Ratchet'
    Tunney, T
    SIGHT AND SOUND, 1998, 8 (01): : 58 - 58
  • [29] RATCHET
    Duffey, Barbara
    NEW ORLEANS REVIEW, 2011, 37 (02): : 72 - 72
  • [30] Skyrmion-anti-Skyrmion chains
    Shnir, Ya
    Tchrakian, D. H.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (02)