EXPLOSIVE SYNCHRONIZATION OF COMBINATIONAL PHASES ON RANDOM MULTIPLEX NETWORKS

被引:1
|
作者
Huo, Guanying [1 ,2 ]
Jiang, Xin [1 ,2 ]
Ma, Lili [3 ]
Guo, Quantong [1 ,2 ]
Ma, Yifang [4 ]
Li, Meng [1 ,2 ]
Zheng, Zhiming [1 ,2 ]
机构
[1] Beihang Univ, LMIB, Beijing 100191, Peoples R China
[2] Beihang Univ, Sch Math & Syst Sci, Beijing 100191, Peoples R China
[3] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[4] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
基金
美国国家科学基金会;
关键词
multiplex network; Kuramoto model; explosive synchronization; KURAMOTO; MODEL;
D O I
10.1615/Int.J.UncertaintyQuantification.2016017051
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The coherent dynamics of a large ensemble of interconnected dynamical units can be characterized by the synchronization process of coupled oscillators. In many real situations, each unit, in the meantime, may exist in multilayer networks, where the composite state of the unit can be determined by the corresponding states on each layer. In this paper, a combinational phase is introduced to describe the joint action of several phases. The combinational phase is a linear superposition of the phase in each layer with a coupling parameter, in the same manner as the generation of voltage from electricity and resistance when applying the phaser method. We study the dynamics of combinational phases by applying the Kuramoto model on multiplex networks, in which the weight of each layer affecting the combinational phase is controlled by a coupling parameter. An abrupt transition is found to emerge in the synchronization of combinational phases by adjusting the coupling parameter. We also show that phases of oscillators in each single layer remain incoherent while the combinational ones are fully synchronized. Theoretical analysis of this explosive transition is studied on a multiplex network, of which one layer is a star network, and the other is a fully connected one. Our findings provide a first understanding of the explosive critical phenomena of combinational phases on multiplex networks.
引用
收藏
页码:99 / 108
页数:10
相关论文
共 50 条
  • [31] Emergence of explosive synchronization bombs in networks of oscillators
    Arola-Fernandez, Lluis
    Faci-Lazaro, Sergio
    Skardal, Per Sebastian
    Boghiu, Emanuel-Cristian
    Gomez-Gardenes, Jesus
    Arenas, Alex
    COMMUNICATIONS PHYSICS, 2022, 5 (01)
  • [32] Explosive Synchronization and Emergence of Assortativity on Adaptive Networks
    Jiang Hui-Jun
    Wu Hao
    Hou Zhong-Huai
    CHINESE PHYSICS LETTERS, 2011, 28 (05)
  • [33] Explosive transitions to synchronization in networks of phase oscillators
    I. Leyva
    A. Navas
    I. Sendiña-Nadal
    J. A. Almendral
    J. M. Buldú
    M. Zanin
    D. Papo
    S. Boccaletti
    Scientific Reports, 3
  • [34] Effective centrality and explosive synchronization in complex networks
    Navas, A.
    Villacorta-Atienza, J. A.
    Leyva, I.
    Almendral, J. A.
    Sendina-Nadal, I.
    Boccaletti, S.
    PHYSICAL REVIEW E, 2015, 92 (06)
  • [35] Explosive synchronization in temporal networks: A comparative study
    Singla, Tanu
    Rivera, M.
    CHAOS, 2020, 30 (11)
  • [36] Explosive synchronization and chimera in interpinned multilayer networks
    Kachhvah, Ajay Deep
    Jalan, Sarika
    PHYSICAL REVIEW E, 2021, 104 (04)
  • [37] Emergent explosive synchronization in adaptive complex networks
    Avalos-Gaytan, Vanesa
    Almendral, Juan A.
    Leyva, I.
    Battiston, F.
    Nicosia, V.
    Latora, V.
    Boccaletti, S.
    PHYSICAL REVIEW E, 2018, 97 (04)
  • [38] Explosive synchronization transitions in complex neural networks
    Chen, Hanshuang
    He, Gang
    Huang, Feng
    Shen, Chuansheng
    Hou, Zhonghuai
    CHAOS, 2013, 23 (03)
  • [39] Explosive synchronization in multilayer dynamically dissimilar networks
    Jalan, Sarika
    Kachhvah, Ajay Deep
    Jeong, Hawoong
    JOURNAL OF COMPUTATIONAL SCIENCE, 2020, 46 (46)
  • [40] On the possibility of explosive synchronization in small world networks
    Koronovskii, A. A.
    Kurovskaya, M. K.
    Moskalenko, O., I
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENIY-PRIKLADNAYA NELINEYNAYA DINAMIKA, 2021, 29 (04): : 467 - 479